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Abstract

In this paper, we propose a parametric model checking algorithm for a subclass of Timed Automata
called Parametric Time-Interval Automata(PTIA). In a PTIA, we can specify upper- and lower-bounds of
the execution time (time-interval) of each transition using parameter variables. The proposed algorithm
takes two inputs, a model described in a PTIA and a property described in a PTIA accepting all invalid
infinite/finite runs (called a never claim), or valid finite runs of the model. In the proposed algorithm,
firstly we determinize and complement the given property PTIA if it accepts valid finite runs. Secondly, we
accelerate the given model, that is, we regard all the actions that are not appeared in the given property
PTIA as invisible actions and eliminate them from the model while preserving the set of visible traces and
their timings. Thirdly, we construct a parallel composition of the model and the property PTIAs which is
accepting all invalid runs that are accepted by the model. Finally, we perform the extension of Double Depth
First Search(DDFS), which is used in the automata-theoretic approach to Linear-time Temporal Logic(LTL)
model checking, to derive the weakest parameter condition in order that the given model never executes the
invalid runs specified by the given property.
Key words: parametric model checking, timed automata, Büchi automata, complementation, acceleration,
emptiness checking, double depth first search

1 Introduction

In recent years, hardware/software systems have been widely used in the areas that high-reliability and real-
timeliness are required, and the importance of system verification techniques have been increasing. One of the
most important verification techniques is model checking[1]. As for real-time system verification, there exist
some useful model checking tools[2, 3]. In such tools, the system models are described in Timed Automata[4]. A
Timed Automaton is a state transition model with clock variables. However, in order to verify Timed Automata
using such a tool, we have to fix various design parameters such as timeouts, delays, and so on, to specific values.
If the desired property is not satisfied, we have to explore the appropriate values of the parameters by try and
error using such a traditional model checking tools. In designing such a system containing design parameters,
we would rather want to derive a condition of parameters (parameter condition) in order to satisfy the given
property, and then fix the parameters to the values satisfying the derived parameter condition. Such a method
to derive parameter condition is called parametric model checking [5].

There exist some parametric model checking tools HyTech[7], TReX[10], and so on. However, they have
some problems — termination of the procedure is not guaranteed, time and space complexity of the procedure
tend to be extremely large if the numbers of states and parameters grow larger, and so on. One of the
considerable approaches to such problems is restricting the expressing power of Timed Automata. Comparison
between existing parametric model checking methods are summarized in Table 1. For example, [6] proposed
a parametric model checking algorithm in that both a model and a property are written in finite parametric
timed automata (PTA) with one integer clock variable. Although the complexity issue is not discussed in [6],
their algorithm apparently runs in exponential time or greater. In [8], a parametric model checking algorithm
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Table 1: Comparison of Parametric Model Checking Methods
proposed by model property decidable? time complexity

Alur et.al.[6] finite PTA w/ one integer clock safety/reachability yes unknown
(exponential or greater)

finite PTA w/ one integer clock
(never claim)

yes unknown
(exponential or greater)

finite PTA w/ one integer clock no —
Henzinger et.al.[7] parametric hybrid automaton safety/reachability no —
Wang[8] timed automaton safety/reachability yes doubly exponential

parametric timed CTL yes doubly exponential
Wang[9] statically parametric automaton safety/reachability yes triply exponential

parametric timed CTL yes triply exponential
Annichini et.al.[10] PTA safety/reachability no —
Nakata et.al.[11] periodic PTA safety/reachability yes doubly exponential

real-time parametric CTL yes doubly exponential
Bruyere et.al.[12] PTA w/ one integer clock safety/reachability yes unknown

(exponential or greater)
parametric timed CTL w/o
equality in time constraints

yes unknown
(exponential or greater)

Mori et.al.[13] concurrent periodic EFSMs safety/reachability yes doubly exponential
real-time parametric CTL yes doubly exponential

this paper finite/Büchi PTIA safety/reachability yes exponential
finite/Büchi PTIA (never claim) yes exponential
finite PTIA yes doubly exponential

is proposed for non-parametric timed automata and timed and parametric extension of Computation Tree
Logic(CTL). The algorithm of [8] is extended to statically-parametric automata in [9], that is, timed automata
having only static parameters (i.e. parameters which may affect whether a transition is on or off, but may
not affect its execution time). However, both of [8] and [9] do not handle parameters written in a model and
may affect the execution times of transitions. In [11], a parametric CTL model checking method is proposed
for periodic timed automata, which is forced to return to their initial states when some specified period has
elapsed, and timing parameters can be written. Applicability of [11] is limited because of the restriction of the
model. In [12], the algorithm of [6] is extended to the parametric CTL model checking of PTA having only one
integer clock variable. However, the time complexity is still exponential or greater (although not evaluated in
[12]).

On the other hand, considering verification problems of web services or business process specifications[14, 15],
each system’s behavior itself merely depends on timing of each transition. To guarantee the performance of
such systems as well as its correctness, it is useful to derive a parameter condition of the execution time of each
transition which ensures the entire performance of the system. In this case, it is sufficient to describe the time
constraint of each transition in a form of a time interval containing parameter variables. According to [16], the
expressive power of such a restricted form of timing constraints is strictly less than traditional timed automata.

Therefore, in this paper, we propose a subclass of Timed Automata, Parametric Time-Interval Automata
(PTIA in short), and propose a parametric model checking algorithm for PTIAs. Each transition condition
of a PTIA does not depend on the execution time of past transitions. Thus, we naturally expect that the
traditional (untimed) model checking methods can be easily applied with an appropriate extension. One of such
traditional model checking methods is the automata-theoretic approach to Linear-time Temporal Logic(LTL)
model checking[17],[1, Chap. 9]. In the method of [17], firstly, a Büchi automaton1 accepting all the infinite
sequences that violate the given LTL property is constructed. Secondly, the product automaton of the given
model and the constructed Büchi automaton is constructed. The constructed product automaton accepts all the
infinite sequences which is executable by the given model and violates the given property. Finally the emptiness
of the accepting language of the product automaton is checked. The emptiness check of Büchi automata can
be efficiently done by Double Depth First Search[18],[1, Sect. 9.3] (DDFS for short). If it is empty, then we can
conclude that the given model does not violate the given LTL property. Otherwise, the accepting run of the
product automaton is a counter-example (an evidence that the given model does not satisfy the given property).

In a non-parametric (traditional) model checking, it is sufficient to try to find one counter-example to check
whether a given property is satisfied. However, it is not the case for parametric model checking. In parametric
model checking, we must consider all possible cases to construct the parameter condition which makes the
accepting language of the product automaton empty. Consider that there are two accepting runs for the

1A Büchi automaton is a kind of a finite automaton accepting infinite sequences which make it visit one of the accepting states
infinitely often.

2



PTIA

PTA

parametric hybrid automata

periodic PTA

TA

SPA
1-clock PTA

TA: Timed Automata

PTA: Parametric Timed Automata

1-clock PTA: PTA w/ one integer clock

SPA: Statically Parametric Automata

PTIA: Parametric Time-Interval Automata

Figure 1: Class Hierarchy of Models in Table 1
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Figure 2: Class Hierarchy of Properties in Table 1

product automaton, and each run is executable at different parameter values. Then, the parameter condition
in order not to satisfy the property is the disjunction of the parameter conditions each of which activates each
accepting run. The parameter condition in order to satisfy the property is its negation. Therefore, in the
parametric model checking, we must find all the accepting runs to construct the expected parameter condition.

The proposed algorithm takes two inputs, a model described in a PTIA and a property described in a
PTIA accepting all invalid infinite/finite runs (called a never claim[19]), or valid finite runs of the model. The
output of the algorithm is the weakest parameter condition, that is, the necessary and sufficient condition of
parameters, in order that the given model satisfies the given property. In the proposed algorithm, firstly we
determinize and complement the given property PTIA if it accepts valid finite runs. Secondly, we accelerate the
given model, that is, we regard all the actions that are not appeared in the given property PTIA as invisible
actions and eliminate them from the model while preserving the set of visible traces and their timings. Thirdly,
we construct a parallel composition of the model and the property PTIAs which is accepting all invalid runs
that are accepted by the model. Since the parallel composition of PTIAs does not always fall into the class of
PTIAs, we show some sufficient conditions of the set of PTIAs whose parallel composition can be transformed
into an equivalent single PTIA. Finally, we perform the extension of DDFS to derive the weakest parameter
condition in order that the given model never executes invalid runs specified by the given property.

Class hierarchies for models and properties in Table 1 are shown in Figs. 1, 2, and 3. To the best of our
knowledge, there are no parametric model checking algorithm that can handle the class of Büchi PTIAs as a
property description language. The class of Büchi PTIAs is a proper superclass of Büchi automata, which is
used by SPIN model checker[19] as a property description language. Therefore, our parametric model checking
algorithm is a conservative extension of SPIN, that can handle a new class of models and properties. Although
the time complexity of our method is exponential in the worst case even if the property is safety/reachability, it
is not practically a serious problem in many cases since the size of the property PTIA is rather small compared
to the model PTIA, and the number of states can be reduced by the proposed acceleration algorithm.

The rest of this paper is organized as follows. In Section 2, the proposed model is defined. In Section 3,
the parametric model checking problem is formally defined and the overview of the proposed parametric model
checking procedure is presented. In Section 4, we describe the method to determinize and complementing PTIAs
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accepting finite sequences. In Section 5, the acceleration algorithm for PTIAs is described. In Section 6, we
define a parallel composition of PTIAs, and give a sufficient condition for a set of PTIAs in order that their
parallel composition is transformed into a single PTIA. In Section 7, we describe the extended DDFS algorithm
to derive the weakest parameter condition that the set of accepting sequences of a given PTIA is empty. Finally,
we conclude this paper in Section 8.

2 Preliminaries

A parametric time-interval automaton(PTIA) is a subclass of a parametric timed automaton[6] (PTA for short).
At first, we recall the formal definition of PTAs. Let Act and V ar denote a set of actions and a set of variables,
respectively. We denote the set of real-numbers by R and the set of non-negative real-numbers by R+. Let
Pred(V ar) denote the minimum set of formulas satisfying e1 ∼ e2 ∈ Pred(V ar) for ∼∈ {<,≤, >,≥,=}, and if
P,Q ∈ Pred(V ar) then P ∧ Q ∈ Pred(V ar) and P ∨ Q ∈ Pred(V ar), where e1 and e2 are linear arithmetic
expression (that is, only addition and subtraction are allowed) over variables in V ar and constants in R.

Definition 1 A parametric timed automaton M is a tuple 〈S, C, PV ar,E, F, sinit〉, where S is a finite set of
control states (also referred to as locations), C ⊆ V ar is a set of clock variables, PV ar ⊆ V ar is a finite set
of parameters, E ⊆ S × (Act ∪ {τ}) × Pred(C ∪ PV ar) × 2C × S is a transition relation, F ⊆ S is a set of
accepting states, and sinit is the initial state. Note that τ represents an internal action. On the other hand,

every other action in Act represents an observable action. We write si
a[P ],r−→ sj if (si, a, P, r, sj) ∈ E. 2

Informally, a transition si
a[P ],r−→ sj means that the action a can be executed from si when the values of both

clock variables and parameters satisfy the formula P (called a transition condition), and after executed, the
state moves into sj and the clock variables in the set r are reset to zero. In any state s, the values of all the
clock variables in C increase continuously at the same rate, representing the time passage.

Formal semantics of parametric timed automata is the same as that of parametric timed automata[6], which
is defined as follows.

The values of clocks and parameters are given by a function σ : (C ∪ PV ar) 7→ R. We refer to such a
function as a value-assignment. We represent a set of all value-assignments by V al. We write σ |= P if a
formula P ∈ Pred(V ar) is true under a value-assignment σ ∈ V al. The semantic behavior of a parametric
timed automaton is given as a semantic transition system on concrete states. A concrete state is represented
by (s, σ), where s is a control state and σ is a value-assignment. Let CS def= {(s, σ)|s ∈ S, σ ∈ V al} be a set of
concrete states.

To define the semantic model of a PTA, we need the following definition:

Definition 2 Let σ + v and σ[r → 0] be the value-assignments derived from σ, which are defined as follows:

For any x ∈ PV ar ∪ C

(σ + v)(x) def=
{

σ(x) + v if x ∈ C,
σ(x) otherwise.

(σ[r → 0])(x) def=
{

0 if x ∈ r,
σ(x) otherwise.
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Formally, the semantic model for a PTA is defined as follows.

Definition 3 The semantic model for a PTA w.r.t. a value-assignment σinit ∈ V al is the timed labelled
transition system (timed LTS for short) 〈CS, Act∪R+∪{τ}, CE, (sinit, σinit[C → 0])〉, where the set of states
is CS, the set of labels is Act ∪R+ ∪ {τ}, the initial state is (sinit, σinit[C → 0]), and the transition relation
CE ⊆ CS× (Act∪R+ ∪{τ})×CS is defined as the minimum set that satisfies the following conditions (in the
following, we write (s, σ) l−→ (s′, σ′) if ((s, σ), l, (s′, σ′)) ∈ CE):

• (s, σ) v−→ (s, σ + v) if v ∈ R+,

• (s, σ) a−→ (s′, σ[r → 0]) if a ∈ Act ∪ {τ}, s
a[P ],r−→ s′, and σ |= P . 2

Now, we define PTIAs, a subclass of PTAs. Informally, the difference of a PTIA and a PTA is that, unlike a
PTA, a PTIA has only one clock variable and the clock variable is always reset to zero at any transition. Since
there is only one clock variable, the set of transition conditions Pred(V ar) in PTAs is restricted to Intvl(V ar),
the set of time-intervals using one clock variable.

Formally, a PTIA is defined as follows. Let Intvl(V ar) denote the minimum set of formulas satisfying
e1 ≤ t ∈ Intvl(V ar), t ≤ e2 ∈ Intvl(V ar), and if P, Q ∈ Intvl(V ar) then P ∧ Q ∈ Intvl(V ar) and P ∨ Q ∈
Intvl(V ar), where e1 and e2 are linear arithmetic expression (that is, only addition and subtraction are allowed)
over variables in V ar \ {t} and constants in R, and t ∈ V ar is the clock variable representing the elapsed time
since the latest visit of the current control state. Apparently, Intvl(V ar) ⊆ Pred(V ar).

Definition 4 A parametric time-interval automaton M is a tuple 〈S, {t}, PV ar,E, F, sinit〉, where E ⊆ S ×
(Act ∪ {τ}) × Intvl(V ar) × S and the semantics of M is the same as the corresponding parametric timed
automaton M ′ = 〈S, {t}, Intvl(V ar), E′, F, sinit〉 where (s, a, P, {t}, s′) ∈ E′ iff (s, a, P, s′) ∈ E. We write

s
a@?t[P ]−→ s′ if (s, a, P, s′) ∈ E. 2

If the timed LTS for a PTIA M is deterministic, that is, there are no two different concrete transitions
(s, σ) a−→ (s1, σ

′
1) and (s, σ) a−→ (s2, σ

′
2), we call M a deterministic PTIA. Otherwise, we call it a nondeter-

ministic PTIA.
In the following, we define a timed weak transition relation for timed LTSs, that is, a transition relation

where time is observable but internal actions are not observable.

Definition 5 A timed weak transition relation →w on states of a timed LTS 〈CS, Act∪R+∪{τ}, CE, (s0, σ0)〉
is defined as follows:

1. τ−→w
def= (( 0→)∗( τ→)∗)∗,

2. (s, σ) v−→w (s′, σ′) (v ∈ R+) def= ∃v1, v2, . . . , vn ∈ R+ [ v =
∑n

i=1 vi ∧ ∃s1, σ1, σ
′
1, . . . , sn, σn, σ′n

s.t. (s, σ) τ−→w (s1, σ1)
v1−→ (s1, σ

′
1) · · · (sn, σn) vn−→ (sn, σ′n) τ−→w (s′, σ′) ],

3. a−→w (a ∈ Act) def=
τ−→w

a−→ τ−→w. 2

We define a run (execution sequence, or trace) of a PTIA M using timed weak transitions.

Definition 6 1. A symbolic finite run πf of PTIA M is a finite sequence of transitions on M such that

πf = s
a1@?[P1]−→ s1 · · · sn−1

an@?t[Pn]−→ sn. A symbolic finite run πf is finitely accepting iff sn ∈ F . We denote
a set of all accepting symbolic finite run beginning with state s by LM

f (s). We abbreviate Lf
M (sinit) as

Lf
M .

2. A concrete finite run πf (σ) of PTIA M and a value-assignment σ ∈ V al is a finite sequence of transitions
on M such that πf (σ) = (s, σ) t1−→w

a1−→w (s1, σ) · · · (sn−1, σ) tn−→w
an−→w (sn, σ). A concrete finite run

πf (σ) is finitely accepting iff sn ∈ F . We denote a set of all accepting concrete finite run beginning with
state s and a value-assignment σ ∈ V al by LM

f (s, σ). We abbreviate Lf
M (sinit, σ) as Lf

M (σ).
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3. A symbolic infinite run π of PTIA M is an infinite sequence of transitions on M such that πω = s
a1@?[P1]−→

s1 · · · sn−1
an@?t[Pn]−→ sn · · ·. A symbolic infinite run π is accepting iff for an infinite number of indices

i, si ∈ F . We denote a set of all accepting symbolic finite run beginning with state s by LM (s). We
abbreviate LM (sinit) as LM .

4. A concrete infinite run π(σ) of PTIA M and a value-assignment σ ∈ V al is an infinite sequence of
transitions on M such that π(σ) = (s, σ) t1−→w

a1−→w (s1, σ) · · · (sn−1, σ) tn−→w
an−→w (sn, σ) · · ·. A concrete

infinite run π(σ) is accepting iff for an infinite number of indices i, si ∈ F . We denote a set of all
accepting concrete finite run beginning with state s and a value-assignment σ ∈ V al by LM (s, σ). We
abbreviate LM (sinit, σ) as LM (σ). 2

If a PTIA is intended to accept finite runs, we call it a finite PTIA. Otherwise, we call it a Büchi PTIA. Note
that only the difference of a finite PTIA and a Büchi PTIA is the interpretation of the acceptance conditions.

Equivalence of PTIAs is defined as follows:

Definition 7 Two given Büchi PTIAs (finite PTIAs) M1 and M2 are timed weak trace equivalent iff ∀σ ∈ V al

[LM1(σ) = LM2(σ)] (∀σ ∈ V al [Lf
M1

(σ) = Lf
M2

(σ)], respectively). 2

To relate symbolic runs and concrete runs w.r.t. a given value-assignment σ, we define the following notations:

Definition 8 We say that σ satisfies a symbolic run π on M iff σ |= ∃t[Pi] holds for any transition condition
Pi appeared in π, denoted by σ sat. π. 2

Then, we have the following proposition:

Proposition 1 For any σ ∈ V al, π(σ) ∈ LM (σ) iff [π ∈ LM and σ sat. π] ( πf (σ) ∈ Lf
M (σ) iff [πf ∈ Lf

M and
σ sat. πf ], respectively). 2

We define the following operations on PTIAs:

Definition 9 We denote a complement automaton of PTIA M by M c, that is, M c accepts a run π iff M does
not accept π. We denote a parallel composition (a product automaton) of two PTIAs M1 and M2 by M1||M2,
that is, M1||M2 accepts a run π iff the projection of π to the executable actions of Mi is an accepting run of
Mi for each i ∈ {1, 2}2. 2

3 Parametric Model Checking of PTIA

In this section, we first formalize the parametric model checking problem of PTIA, then give an overview of the
procedure to solve the problem.

3.1 Problem Formulation

The formal definition of the parametric model checking problem of PTIA is as follows:

Definition 10 Let M be a model written in a (finite or Büchi) PTIA. Let Mf
p (or Mω

p ) be a property written
in a finite PTIA (or a Büchi PTIA, respectively). Parametric model checking problem is to derive the weakest
parameter condition P satisfying

∀σ[σ |= P iff Lf
M (σ) ∩ Lf

Mf
p

(σ) = ∅]

( or ∀σ[σ |= P iff LM (σ) ∩ LMω
p
(σ) = ∅], respectively),

where σ ∈ V al. Note that we call P is the weakest parameter condition iff ∀σ[σ |= Q ⇒ σ |= P ] for any
parameter condition Q. 2

2For the concrete definition of M1||M2, see Definition 14 in Sect. 6.
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Figure 4: Example of Nondeterministic PTIA

3.2 Overview of Parametric Model Checking Procedure

Let Mp be an input property described by either a Büchi PTIA Mω
p accepting invalid infinite runs (called a

never claim[19]), or a finite PTIA Mf
p accepting invalid finite runs. Parametric model checking procedure is as

follows:

Step 1. If Mp is a finite PTIA Mf
p accepting valid finite runs, construct a complement PTIA (co-PTIA) M c

p

from Mp (see Section 4). Otherwise let M c
p = Mp.

Step 2. Replace all the actions of M which do not appear in M c
p with the internal action. Then, apply

acceleration (see Section 5) for M and M c
p to eliminate all internal actions and reduce the number of

states while preserving timed weak trace equivalence. Let M ′ and M c
p
′ be the resultant PTIAs for M and

M c
p , respectively.

Step 3. Construct parallel composition of M ′ and M c
p
′: M ′||M c

p
′3 (see Section 6).

Step 4. Perform extended depth first search (see Section 7) on M ′||M c
p
′ to derive the weakest parameter con-

dition P .

4 Determinizing and Complementing PTIAs

Complementing a nondeterministic PTIA can be performed by first determinizing it using a small extension of
the traditional subset construction method for finite automata[21, Chap. 1], and then complementing the set
of accepting state F . Not every Büchi automaton, however, has an equivalent deterministic Büchi automaton.
In this section, we only discuss complementing a finite PTIA.

Since a finite PTIA is different from a finite automaton in that PTIA has timed transition additionally, we
need to take care of it in the determinization of PTIA. Indeed, if we only apply subset construction to PTIA
for determinization, we will fail to get a deterministic PTIA.

Example 1 Fig. 4 shows a nondeterministic finite PTIA Mex, where we assume ∃t[P1(t) ∧ P2(t)]. In Fig. 4
and the following figures, a doubled circle represents an accepting state. Direct application of subset construction
to Mex gives a deterministic PTIA M ′

ex as shown in Fig. 5. The concrete model for M ′
ex, shown in Fig. 5, has

a false path executing the action β after some time passage satisfying P2 and the action α. 2

To avoid this problem, we modify the given PTIA M = 〈S, {t}, PV ar,E, F, sinit〉 to the PTIA M ′ having
only mutually exclusive or exactly the same transition conditions for multiple outgoing transitions of each state
with the same action name by using the following transformation M ′ = dj (M):

Definition 11

dj (M) def= 〈S, {t}, PV ar,⋃

s∈S,a∈Act

{djout(out(s, a))}, F, sinit〉,

3Note that if M is deterministic, then M ′ is also deterministic. Since trace equivalence coincides bisimulation equivalence when
automata are deterministic[20, Chap. 11], M and M ′ are bisimilar. Since bisimulation equivalence is congruent w.r.t. parallel
composition[20, Chap. 7], M ||Mp and M ′||Mp are (timed) weakly bisimilar and thus they are timed weak trace equivalent. If M is
nondeterministic, then we first convert it into deterministic one by the proposed algorithm in Section 4 and then apply acceleration
algorithm in Section 5.
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Figure 5: Direct Subset Construction of Fig. 4 and its Concrete Model

where,

Nxt(s, a) def= {i|s a@?t[Pi]−→ si, a ∈ Act,

Pi ∈ Intvl(V ar), si ∈ S}
out(s, a) def= {s a@?t[Pi]−→ si|a ∈ Act,

Pi ∈ Intvl(V ar), si ∈ S}
djout(E′) def=




E′ if |E′| = 1,

{s
a@?t[

∧
i
{¬Pi}∧Q]
−→ s′} ∪⋃

i{s
a@?t[Pi∧Q]−→ s′}

∪⋃
i{s

a@?t[Pi∧Q]−→ si} ∪
⋃

i{s
a@?t[Pi∧¬Q]−→ si}

if |E′| ≥ 2 and

djout(E′ \ {s a@?t[Q]−→ s′}) =
⋃

i∈{1,...,l}⊆Nxt(s,a){s
a@?t[Pi]−→ si}.

2

Intuitively, out(s, a) ⊆ E is the set of all outgoing transitions from the state s with the action a in M ,
and djout(out(s, a)) is a recursive function that transforms the transition relations of out(s, a) into ones that
any two transition conditions Pi and Pj in djout(out(s, a)) is either disjoint or exactly the same. Note that
in Definition 11, if |E′| ≥ 2, then the function djout(E′) computes the set of transition relations using the

recursively computed value of djout(E′ \ {s a@?t[Q]−→ s′}), denoted by
⋃

i∈{1,...,l}⊆Nxt(s,a){s
a@?t[Pi]−→ si}.

Formally, the following proposition states that the transformation djout(out(s, a)) is correct.

Proposition 2 The return value of the function djout(E′) =
⋃

k∈{1,...,l}{s
a@?t[Pk]−→ sk} satisfies the following

property:

∀i, j ∈ {1, . . . , l}, ∀t ∈ R+,

[¬(Pi(t) ∧ Pj(t)) ∨ (Pi(t) ⇔ Pj(t))]

(Proof) Routine by induction w.r.t. the size of E′. 2

Example 2 The resultant nondeterministic PTIA after applying dj() to Mex is depicted in Fig. 6. We get a
deterministic PTIA M ′′

ex shown in Fig. 7 by applying traditional subset construction. As in Fig. 8, the concrete
model corresponds to M ′′

ex has no false paths, where t1 |= P1 ∧ ¬P2, t2 |= ¬P1 ∧ P2, t3 |= P1 ∧ P2, t4 |= Q, and
t5 |= Q. 2

Formally, the following proposition holds for the transformation dj(M).

Proposition 3 For any PTIA M and any value-assignment σ ∈ V al, M and dj(M) are semantically equivalent
under σ, that is, the corresponding timed LTSs of M and dj(M) w.r.t. σ are exactly the same. 2
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Figure 7: Applying Subset Construction for Fig. 6

The following proposition states that there is direct correspondence between nondeterministic branches in the
concrete transition system of M and those in the symbolic transition system of dj(M).

Proposition 4 For any PTIA M , σ ∈ V al, a ∈ Act, t ∈ R+, and s, s1, s2 ∈ S, there are concrete transitions
(s, σ) t−→ a−→ (s1, σ) and (s, σ) t−→ a−→ (s2, σ) iff there exists some P ∈ Intvl(V ar) such that dj(M) has

symbolic transitions s
a@?t[P ]−→ s1 and s

a@?t[P ]−→ s2. 2

Then, we have the following theorem.

Theorem 1 For any finite PTIA M , let dj(M) = 〈S, {t}, PV ar,Edj , F, sinit〉 and MNFA = 〈S, Σ, ENFA, F,
sinit〉 be the corresponding nondeterministic finite automaton such that Σ = Act×Intvl(V ar) and (s, (a, P ), s′) ∈
ENFA iff (s, a, P, s′) ∈ Edj. Let MDFA = 〈S′, Σ, EDFA, F ′, s′init〉 be the corresponding deterministic finite au-
tomaton converted from MNFA using the traditional subset construction method[21, Chap. 1]. Let M ′ = 〈S′, {t},
PV ar, EDPTIA, F ′, s′init〉 be the corresponding finite PTIA such that (s, a, P, s′) ∈ EDPTIA iff (s, (a, P ), s′) ∈
EDFA. Then M ′ is a deterministic finite PTIA such that for any σ ∈ V al, Lf

M ′(σ) = Lf
M (σ). 2

By Theorem 1, we can determinize any finite PTIA M by applying transformation dj(M) and then per-
forming the subset construction. Complementing accepting states F ′ of the resultant deterministic finite PTIA
yields to M c, a complement PTIA of M . This discussion yields the following corollary:

),( 01 σs

),( 31 σs )},,({ 02 σfss )},,({ 32 σfss

),( 21 σs

α
β

3t

2t

5t

),( 11 σs

1t

),( 0σfs

),( 02 σs ),( 32 σs

β
α

α
4t

Figure 8: Concrete Model for Fig. 7
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Figure 9: Complement PTIA for Fig. 7

Corollary 1 For any finite PTIA M , there exists its complement PTIA M c such that ∀σ ∈ V al [Lf
M (σ)

c
=

Lf
Mc(σ)] 2

Example 3 The complement PTIA for Example 2 is shown in Fig. 9. 2

Determinization may cause exponential blowup of the state space. However, in the procedure shown in
Sect.3.2, only a property PTIA may be determinized and then complemented. From the observation that the
size of a property PTIA may be rather small compared to a model PTIA in many cases, we think that this
exponential blowup does not practically cause any serious problems in verification.

5 Accelerating PTIAs

In this section, we discuss an acceleration algorithm for parametric model checking on a single PTIA.
As in the partial order reduction[1, Chap. 10] to accelerate model checking, we introduce the notion of

invisibility w.r.t. a given property. For example, if a property is described as “The execution time from action
a to action b takes at most v time units”, we regard a, b ∈ Act as visible actions and other actions as invisible
(internal) action τ .

Intuitively, in order to preserve a property described by PTIA, it is sufficient to eliminate invisible actions in
the model described by PTIA while preserving traces of visible actions and their execution time. To eliminate
invisible actions while preserving the execution times of visible actions on M , we first map time constraints on
M to actions on automata, and then apply the similar operations as those on regular expressions to sum up the
time constraints of a consecutive sequence of invisible (internal) actions and a directly successing visible action,
by regarding invisible actions on M as ε-transitions on automata. The formal definition of the transformation
is as follows.

Definition 12 For any P, Q ∈ Intvl(V ar),

1. Θ is a binary operator on Intvl(V ar) satisfying (PΘQ)(t) def= ∃t1, t2[P (t1) ∧Q(t2) ∧ t = t1 + t2]

2. ξk is a unary operator on Intvl(V ar) satisfying ξk(P )(t) def= ∃t′[t = k×t′∧P (t′)], where subscript k stands
for a loop parameter. 2

For any PTIA M = 〈S, {t}, PV ar,E, F, sinit〉, without loss of generality, we assume that for any states

s, s′ ∈ S, for any action α ∈ Act ∪ {τ}, and for any transition conditions P,Q ∈ Intvl(V ar), if s
a@?t[P ]−→ s′

and s
a@?t[Q]−→ s′, then P = Q, because if there are such transitions that P 6= Q, then we can merge them into

s
a@?t[P∪Q]−→ s′ while preserving the semantics.

In the sequel, we formally define a transformation Accel(M, srip) of a PTIA M to reduce the number of
states of M by using the similar algorithm to derive a regular expression from a finite automaton described in
Ref. [21, Chap. 1].

10



][@? )(i
inPtτ ][@? )( j

outj Ptα

][@? )(l
loopPtτ

)(i
ins rips )( j

outs

][@? ),( ji
inoutj Ptα

)(i
ins )( j

outs
])

)()(

[(@?

),()(

|)(|)1(

)(

||1

ji
inout

j
out

L
loopkloopk

i
inj

PP

PP

Pt

L

∨Θ

ΘΘ

Θ

ξξ

α

L

),( ripsMAccel

)( Ll ∈

)( Jj ∈)( Ii ∈
}){( τα ∪∈ Actj

Figure 10: Illustration of Accel(M, srip)

Definition 13 For any PTIA M = 〈S, {t}, PV ar, E, F, sinit〉 and any state srip ∈ S, we define the following
subsets of transitions of M w.r.t. srip:

INsrip

def= {s(i)
in

τ@?t[P
(i)
in

]−→ srip|i ∈ I, s
(i)
in 6= srip},

OUTsrip

def= {srip
αj@?t[P

(j)
out]−→ s

(j)
out|j ∈ J, s

(j)
out 6= srip,

αj ∈ Act ∪ {τ}},

LOOPsrip

def= {srip

τ@?[P
(l)
loop

]−→ srip|l ∈ L},

INOUTsrip

def= {s(i)
in

αj@?t[P
(i,j)
inout

]−→ sout(j) |i ∈ I, j ∈ J}.

Then, we define an acceleration function Accel(M, srip)
def= 〈Saccel, {t}, PV ar,Eaccel, F, sinit〉, where

Saccel
def= S \ {srip},

Eaccel
def=

(E \ (INsrip ∪OUTsrip ∪ LOOPsrip ∪ INOUTsrip))

∪{s(i)
in

αj@?t[Pi,j ]−→ s
(j)
out|i ∈ I, j ∈ J,

Pi,j = (P (i)
in Θξk1(P

(1)
loop)Θ · · ·Θξk|L|(P

(|L|)
loop )ΘP

(j)
out)

∨ P
(i,j)
inout }.

2

The transformation made by Accel(M, srip) is illustrated in Fig. 10. Since Accel(M, srip) introduces new
integer parameters k1, . . . , k|L| (|L| is the number of self-loops for the state srip), we refer to the resultant PTIA
M ′(k1, . . . , k|L|) as a PTIA with loop parameters4.

The following theorem is a direct consequence from the definition of operators Θ, ξ in Definition 12, and ∨
(a logical “or” operator on Intvl(V ar)), and their correspondences to operations on regular expressions defined
in Definition 13.

4Since loop parameters can be treated almost the same as other (real-valued) parameters except that their domain is restricted
to non-negative integers, we omit the formal definition of a PTIA with loop parameters due to the lack of space.
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Figure 11: Example of Acceleration of PTIA

Theorem 2 Let M be a PTIA and let Accel(M, srip) = M ′(k1, ..., kn) be a resultant PTIA with loop parameters
derived by the acceleration function from M and a state srip in M . Then,

∀σ ∈ V al[LM (σ) =
n⋃

i=1

⋃

ki∈N0

LM ′(k1,...,kn)(σ)],

where N0 is the set of all non-negative integers. 2

From Theorem 2, repeated application of Accel(M, srip) for a PTIA M yields to an equivalent (in the sense of
Theorem 2) PTIA with loop parameters M ′(k1, . . . , km) which does not contain any internal actions.

Example 4 An example of acceleration of a finite PTIA is shown in Fig. 11. 2

6 Parallel Composition of PTIAs and Transformation to Single PTIA

In this section, we define a parallel composition of PTIAs and give a sufficient syntactic restriction in order
that a parallel composition of PTIAs is converted into a single PTIA.

The definition of a parallel composition is similar to the traditional timed automata[4]. The communication
of PTIAs in the parallel composition is defined as follows: if one PTIA is ready to execute some (observable)
action a and some other PTIAs can also execute a, it waits until all the other PTIAs are ready and then
execute a simultaneously. Otherwise, it executes a independently. Formally, the parallel composition of PTIAs
is defined as follows:

Definition 14 A parallel composition of PTIAs M1||M2, where M1 = 〈S1, {t1}, PV ar1, E1, F1, s
(1)
init〉

and M2 = 〈S2, {t2}, PV ar2, E2, F2, s
(2)
init〉, is defined by the following parametric timed automaton M =

〈S, C, PV ar,E, F, sinit〉 such that S def= S1 × S2, C def= {t1, t2}, PV ar def= PV ar1 ∪ PV ar2, F def= F1 × F2, sinit
def= (s(1)

init, s
(2)
init), and

E def= {((s1, s2), a, P1 ∧ P2, {t1, t2}, (s′1, s′2))|
a ∈ Act1 ∩Act2,

(s1, a, P1, s
′
1) ∈ E1,

(s2, a, P2, s
′
2) ∈ E2}

∪{((s1, s2), a1, P1, {t1}, (s′1, s2))|
a1 ∈ (Act1 \Act2) ∪ {τ},
(s1, a1, P1, s

′
1) ∈ E1}

∪{((s1, s2), a2, P2, {t2}, (s1, s
′
2))|

a2 ∈ (Act2 \Act1) ∪ {τ},
(s2, a2, P2, s

′
2) ∈ E2},

12
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Figure 12: Parallel Composition of Figs. 9 and 11
.

where Act1 and Act2 denote the set of all executable actions by M1 and M2, respectively. 2

If given two PTIAs always execute actions simultaneously, we can always convert a parallel composition of
them into a single PTIA. Formally, it is defined as follows:

Definition 15 PTIAs M1 and M2 are completely synchronous if M1 and M2 have no internal transitions and
Act1 = Act2. 2

Theorem 3 For any two M1 and M2 that are completely synchronous, there exists a single PTIA M that is
semantically equivalent to the parallel composition of M1 and M2.

(Proof Sketch) Let M ′ = 〈S′, C ′, PV ar, E′, F ′, s′init〉 be the parallel composition of M1 and M2. If M1

and M2 are completely synchronous, from Definitions 14 and 15, E′ must be the following:

E′ = {((s1, s2), a, P1 ∧ P2, {t1, t2}, (s′1, s′2))|
a ∈ Act1 ∩Act2 = Act,

(s1, a, P1, {t1}, s′1) ∈ E1,

(s2, a, P2, {t2}, s′2) ∈ E2}.

Then, construct a PTIA M = 〈S, {t}, PV ar,E, F, sinit〉 such that S = S′, F = F ′, sinit = s′init, and

E def= {((s1, s2), a, P1(t) ∧ P2(t), (s′1, s
′
2))|

((s1, s2), a, P1 ∧ P2, {t1, t2}, (s′1, s′2)) ∈ E′}.

We can easily prove that M is semantically equivalent to M ′ since in M ′, the clock variables t1 and t2 are
initially zeros and always reset to zeros simultaneously whenever some transition is executed. 2

The following corollary is a direct consequence of Theorem 3 and the known results for finite automata[21,
Chap. 1] and Büchi automata[1, Chap. 9]:

Corollary 2 If M1 and M2 are completely synchronous finite PTIAs, then for any σ ∈ V al, Lf
M1||M2

(σ) =

Lf
M1

(σ)∩Lf
M2

(σ). If M1 and M2 are completely synchronous Büchi PTIAs, and all the state of M1 are accepting
states, then for any σ ∈ V al, LM1||M2(σ) = LM1(σ) ∩ LM2(σ). 2

Example 5 The parallel composition of Examples 3 and 4 are shown in Fig. 12 2

7 Extended Double Depth First Search

As described in Section 3.2, we need to extend DDFS to derive the weakest parameter condition in order that
the set of accepting runs of the product Büchi PTIA is empty. We refer to the extended DDFS as EDDFS.
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Figure 14: Parametric Double Depth First Search: Searching for Accepting States (Visiting state A first)

7.1 EDDFS Algorithm

In the original DDFS, a hash table is used to reduce the search space and a stack is used to store the path
from initial state to the reached accepting states in order to find a loop including the accepting state. This is
based on the idea of reuse of the visited state information. On the other hand, we cannot take advantage of
these techniques to reduce search space on the product Büchi PTIAs, even if we extend the hash and stack to
store the parameter condition to obtain the parameter condition for executing the already visited paths. This
is because we have to perform an exhaustive enumeration of paths. The original DDFS algorithm returns only
yes or no for the given verification problem. Therefore, it is enough to check the existence or non-existence of
an acceptance sequence on a product Büchi automaton. On the other hand, our aim is to derive the weakest
parameter condition (WPC for short) from the given verification problem. In order to do so, we have to calculate
the parameter condition representing the set of all parameter values that enable some acceptance sequence of
the product Büchi PTIA, which turns to require an exhaustive enumeration of acceptance sequences. Besides,
we cannot store WPC to a hash table and a stack, illustrated in the following example.

Suppose we extend the stack used in DFS by additionally storing the weakest parameter condition for each
state in order to reach an accepting state. Let hash(s) be the stored weakest parameter condition for the state
s. The result of the DFS started from sinit and firstly visited the state B (A) is shown in Fig. 13 (Fig. 14,
respectively). In Figs. 13 and 14, each Pi represents the weakest parameter condition for executing each single
transition. As illustrated in Figs. 13 and 14, the original DDFS returns the wrong results in both of the cases,
because the correct values for hash(A) and hash(B) are P4 ∧ ((P6 ∧ P7) ∨ P8) and P3 ∧ ((P5 ∧ P8) ∨ P7),
respectively.

This is because, unlike the simple reachability, WPC for each state generally depends on the paths it can be
reached. The same is true for finding all the possible loops including some accepting state sf in order to derive
WPC (illustrated in Fig. 15).

Now we describe EDDFS algorithm in the following.
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WPCDFS (M = 〈S, {t}, PV ar,E, F, sinit〉)
= return ¬WPCDFS1(sinit, ∅)

WPCDFS1(s, stack)

= let Nxt = {i|s ai@?t[Pi]−→ si, si 6∈ stack ∪ {s}},
result =

∨
i∈Nxt ∃t[Pi(t) ∧WPCDFS1(si, stack ∪ {s})]

in if s ∈ F then return result ∨WPCDFS 2(s, ∅, s)
else return result

WPCDFS2(s, stack2, sf )

= let Nxt2 = {i|s ai@?t[Pi]−→ si, si 6∈ stack2 ∪ {s, sf}},
NxtAccept = {j|s aj@?t[Pj ]−→ sf}

in return∨
i∈Nxt2

∃t[Pi(t) ∧WPCDFS 2(si, stack2 ∪ {s}, sf )]
∨∨

j∈NxtAccept ∃t[Pj(t)]

Figure 16: Algorithm WPCDFS (M)

Definition 16 The algorithm WPCDFS (M) which takes a Büchi PTIA M as an input and returns the weakest
parameter condition P is defined in Fig. 16. 2

To claim the correctness of WPCDFS2(s, stack2, sf ), we need the following notations:
Let M(S′, F ′) denote the PTIA M whose set of all states S and accepting states F are replaced with S′

and F ′, respectively. Let fsin,sout(M) denote the PTIA M whose states sin, sout ∈ S are merged into one state
denoted by [sin, sout] and all incoming (outgoing) transitions of [sin, sout] are those of sin (sout, respectively).
Formally fsin,sout(M) is defined as follows:

Definition 17 For any Büchi PTIA M = 〈S, {t}, PV ar, E, F, sinit〉, let fsin,sout(M) def= 〈S′, {t}, PV ar,E′, F ′, s′init〉
where

S′ def= (S \ {sin, sout}) ∪ {[sin, sout]},
E′ def= {(s, a, P, s′)|(s, a, P, s′) ∈ E, s 6= sout, s

′ 6= sin}
∪{([sin, sout], a, P, s′)|(sout, a, P, s′) ∈ E, s′ 6= sin}
∪{(s, a, P, [sin, sout])|(s, a, P, sin) ∈ E, s 6= sout}
∪{([sin, sout], a, P, [sin, sout])|(sout, a, P, sin) ∈ E}

F ′ def=





(F \ {sin, sout}) ∪ {[sin, sout]}
if F ∩ {sin, sout} 6= ∅,

F otherwise.

s′init
def=

{
sinit if sinit 6∈ {sin, sout},
[sin, sout] otherwise.

2
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The following lemma claims the correctness of WPCDFS 2().

Lemma 1 For any σ ∈ V al, σ |= WPCDFS 2(s, stack2, sf ) iff Lfsf ,s(M((S\stack2)∪{s,sf},{sf})) ([sf , s], σ) 6= ∅.
2

Since fsin,sout
(M) = M if sin = sout and the state [s, s] is equivalent to s, we have the following corollary:

Corollary 3 For any σ ∈ V al, σ |= WPCDFS 2(s, ∅, s) iff LM(S,{s})(s, σ) 6= ∅. 2

To claim the correctness of WPCDFS1(s, stack), we define the following function g(M):

Definition 18 For any Büchi PTIA M , let g(M) def= 〈S, {t}, PV ar,E′, F, sinit〉, where E′ def= E∪ {(sf , β,
WPCDFS2(sf , ∅, sf ), sf ) | sf ∈ F} and β ∈ Act. 2

Proposition 5 LM (s, σ) 6= ∅ iff Lg(M)(s, σ) 6= ∅.
(Proof Sketch) Since the necessity is trivial, we prove the sufficiency. Suppose Lg(M)(s, σ) 6= ∅. Then,

there exists π ∈ Lg(M)(s) such that σ sat. π. If there are no transitions of β, clearly π ∈ LM (s). Otherwise,

σ |= WPCDFS 2(sf , ∅, sf ) and thus LM(S,{sf})(s, σ) 6= ∅ by Corollary 3. Therefore, there exists π′ = sf
b1@?[Q1]−→

s1 · · · si−1
bi@?[Qi]−→ sf · · · such that σ sat.π′. Let π′′ be the run obtained by replacing every occurrence of the

transition of β in π with sf
b1@?[Q1]−→ s1 · · · si−1

bi@?[Qi]−→ sf . Then, π′′ ∈ LM (s) and σ sat. π′′. Therefore,
LM (s, σ) 6= ∅. 2

The following lemma claims the correctness of WPCDFS 1().

Lemma 2 For any σ ∈ V al, σ |= WPCDFS 1(s, stack) iff Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅. 2

Since WPCDFS (M) = ¬WPCDFS 1(sinit, ∅) and Proposition 5 hold, we have the following corollary:

Corollary 4 For any σ ∈ V al, σ |= WPCDFS (M) iff LM (σ) = ∅. 2

The proofs of Lemmas 1 and 2 are depicted in A.
From Corollary 4 and the terminating property of the general depth first search algorithm, we obtain the

following theorem.

Theorem 4 The algorithm WPCDFS (M) always terminates and returns the weakest parameter condition for
emptiness of any given Büchi PTIA M . 2

The time and space complexities of WPCDFS (M) are evaluated as follows. The number of different tuples
of arguments for the function WPCDFS 2(s, stack2, sf ) is bounded by |S| × 2|S| (the variation of sf ’s are not
counted here since sf is fixed to one value during the recursive computation of WPCDFS2()). Assuming that
the recursive function is implemented in a dynamic programming fashion, that is, the function call of the same
tuple of arguments occurs at most once5, the number of all recursive calls is also bounded by |S| × 2|S|. Thus,
the time complexity of WPCDFS2(s, stack2, sf ) is O(|S| × 2|S|). Similarly, the number of all recursive calls of
WPCDFS1(s, stack) is bounded by |S|×2|S|. Since WPCDFS 1() calls WPCDFS2() when each s ∈ F is visited,
the time complexity of WPCDFS1(s, stack) is estimated as O(|S|×2|S|)+|F |×O(|S|×2|S|) = O(|S|×|F |×2|S|).

7.2 Restriction of EDDFS to Finite PTIAs

As for the case that the input property Mp is given as a finite PTIA, we do not have to apply EDDFS, because
we have only to enumerate all paths from the initial state to each reachable accepting state. The algorithm is,
therefore, simplified to the following.

Definition 19 The algorithm WPCDFS f (M) which takes a finite PTIA M as an input and returns the weakest
parameter condition P is defined in Fig. 17. 2

Corollary 5 The algorithm WPCDFS f (M) always terminates and returns the weakest parameter condition
for emptiness of any given finite PTIA M . 2

Example 6 The output of the algorithm
WPCDFS f () for the product PTIA in Example 5 is ¬∃t(((PinΘ ξk(Ploop) ΘPout1) ∨Pinout) ∧P1 ∧ ¬P2). 2

5The return values of the function of a tuple of arguments is cached at the first time it is called, and the cached values are
returned at the later times.
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WPCDFS f (M = 〈S, {t}, PV ar,E, F, sinit〉)
= return ¬WPCDFS f

1 (sinit, ∅)

WPCDFS f
1 (s, stack)

= let Nxt = {i|s ai@?t[Pi]−→ si, si 6∈ stack ∪ {s}},
result =

∨
i∈Nxt ∃t[Pi(t) ∧WPCDFS1(si, stack ∪ {s})]

in if s ∈ F then return true
else return result

Figure 17: Algorithm WPCDFSf (M)

8 Conclusion

In this paper, we proposed a subclass of timed automata called PTIA, which is still useful for describing some
applications such as web service specifications. We have also proposed the parametric model checking method
for PTIAs by extending some traditional algorithms for finite automata and the known efficient LTL model
checking algorithm called double depth first search(DDFS).

Similar to DDFS, the proposed EDDFS algorithm can be also applied to on-the-fly model checking[1, Chap.9],
that is, a parallel composition of PTIAs can be constructed on-the-fly during EDDFS, saving the size of memory
where the constructed state space is stored.

If we consider parameter variables as constants, the class of PTIAs is a proper subclass of event-clock
automata[22]. The class of event-clock automata is known as a determinizable subclass of timed automata.
Thus, the determinization algorithm shown in Sect. 4 is essentially equivalent to [22], although the deter-
minization algorithm is not explicitly described in [22]. In [23], the algorithm to remove epsilon transitions
of event-clock automata is proposed. However, the acceleration algorithm shown in Sect. 5 is different from
that of [23]. The acceleration algorithm presented in this paper is more efficient than that of [23] since our
algorithm make use of the good properties of PTIAs at the expense of its expressive power. For example, unlike
[23], our acceleration does not increase the number of states. Similarly, the presented acceleration algorithm
is the efficient subset of the partial order reduction for timed automata[24], since only completely synchronous
parallel compositions are considered in our acceleration. Note that the methods in [22, 23, 24] do not consider
parameters.

The future work is to apply some practical examples to show the usefulness of the proposed method. It is
also an interesting future work to investigate the expressive power of a parallel composition of PTIAs, and, if
possible, extend the proposed method to apply the case that the parallel composition of PTIAs does not fall
into a single PTIA.
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A Full Proofs of Lemmas 1 and 2

In the proofs of Lemmas 1 and 2, we use the notion of depth for each state of a (Büchi) PTIA M , defined as
follows:

Definition 20 For a PTIA M and its state s ∈ S, depthM (s) is the length of the longest simple path6 beginning
with s in the transition graph of M . 2

A.1 Proof of Lemma 1

We prove that “for any σ ∈ V al, σ |= WPCDFS 2(s, stack2, sf ) iff Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6=
∅” by induction of
depthfsf ,s(M((S\stack2)∪{sf ,s},{sf}))([sf , s]).

[Case of depthfsf ,s(M((S\stack2)∪{sf ,s},{sf}))([sf , s]) = 0]

[=⇒] From Definition 17, the number of states in fsf ,s(M((S \ stack2) ∪ {sf , s}, {sf})) must be one. If there
are no outgoing transitions from [sf , s] in fsf ,s(M((S \ stack2) ∪ {sf , s}, {sf})), WPCDFS 2(s, stack2, sf ) =
false from Definition 16. Thus, clearly σ |= WPCDFS2(s, stack2, sf ) implies
Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6= ∅.

Suppose the set of the transitions of outgoing transitions from s in M is {s ai@?[Pi]−→ si|i ∈ I}. From
Definition 17, the set of the transitions of outgoing transitions from [sf , s] in fsf ,s(M((S\stack2)∪{sf , s}, {sf}))
is {[sf , s]

ai@?[Pi]−→ si|i ∈ I}. Choose arbitrary σ ∈ V al such that σ |= WPCDFS 2(s, stack2, sf ). Since
fsf ,s(M((S\stack2)∪{sf , s}, {sf})) contains only one state, si = [sf , s] for any i ∈ I. From Definition 16, Nxt2 =
∅ and thus WPCDFS 2(s, stack2, sf ) =

∨
j∈NxtAccept ∃t[Pj(t)]. Therefore, there exists some j ∈ NxtAccept and

i ∈ I such that j = i and σ |= ∃t[Pi(t)]. Thus, there exist some ti ∈ R+ and a concrete path ([sf , s], σ)
ti−→ ai−→ ([sf , s], σ) for some i ∈ I. Since from Definition 17, the state [sf , s] is an accepting state of fsf ,s(M((S \

stack2) ∪ {s, sf}, {sf})), Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6= ∅. 2

[⇐=] If there are no outgoing transitions from [sf , s] in fsf ,s(M((S \stack2)∪{sf , s}, {sf})), from Definition 6,
Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) = ∅. Thus, clearly Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6= ∅
implies σ |= WPCDFS 2(s, stack2, sf ).

Suppose the set of the transitions of outgoing transitions from [sf , s] in fsf ,s(M((S \ stack2)∪{s, sf}, {sf}))
is {[sf , s]

ai@?[Pi]−→ si|i ∈ I}. Since fsf ,s(M((S\stack2)∪{sf , s}, {sf})) contains only one state, si = [sf , s] for any
i ∈ I. Choose arbitrary σ ∈ V al such that Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6= ∅. From Definition 6 and

depthfsf ,s(M((S\stack2)∪{sf ,s},{sf}))([sf , s]) = 0, there is an infinite accepting run πi = [sf , s]
ai@?[Pi]−→ [sf , s] · · · for

some i ∈ I such that σ sat. πi. Thus, σ |= ∃t[Pi(t)]. From Definition 17, there exists a transition s
ai@?[Pi]−→ sf

in M . From Definition 16, Nxt2 = ∅ and WPCDFS2(s, stack2, sf ) =
∨

j∈NxtAccept ∃t[Pj(t)]. Since there exists
some i ∈ NxtAccept , σ |= WPCDFS 2(s, stack2, sf ). 2

[Case of depthfsf ,s(M((S\stack2)∪{sf ,s},{sf}))([sf , s]) = k + 1]

[=⇒] Choose arbitrary σ ∈ V al such that σ |= WPCDFS 2(s, stack2, sf ). From Definition 16, there are only
the following two cases:

(a) σ |= ∨
i∈Nxt2

∃t[Pi(t) ∧WPCDFS2(si, stack2 ∪ {s}, sf )] holds.

6A simple path is a path which does not contain any loops.
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(b) σ |= ∨
j∈NxtAccept ∃t[Pi(t)] holds.

For the case (b), there exist j ∈ NxtAccept and tj ∈ R+ such that s
aj@?t[Pj ]−→ sf in M and σ |= Pj(tj). From

Definition 17, [sf , s]
aj@?t(Pj),sf ,s−→ and [sf , s] is an accepting state in fsf ,s(M((S \ stack2)∪{sf , s}, {sf})). Thus,

there is an accepting run π = [sf , s]
aj@?t[Pj ]−→ [sf , s] · · · and σ sat. π in fsf ,s(M((S \ stack2) ∪ {sf , s}, {sf})).

Therefore, Lfsf ,s(M((S\stack2)∪{sf ,s},{sf}))(s, σ) 6= ∅.
For the case (a), there exists i ∈ Nxt2 and ti ∈ R+ such that s

ai@?t[Pi]−→ si in M , σ |= Pi(ti), and σ |=
WPCDFS2(si, stack2∪{s}, sf ). From the assumption of induction, Lfsf ,si

(M((S\stack2∪{s})∪{sf ,si},{sf}))(si, σ) 6=
∅. Thus, there exists an accepting run πi = [sf , si]

b1@?[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ s(l) · · ·, such that σ sat. πi,
s(l) = [sf , si] for an infinite number of indices l, and σ sat. πi. Since fsf ,si

(M((S \stack2∪{s})∪{sf , si}, {sf}))
does not contain the states in (stack2 ∪ {s}) \ {sf , si}, s(l) 6∈ (stack2 ∪ {s}) \ {sf , si} for any l. Let li be the

minimum indices l such that s(li) = [sf , si] and πf
i be the finite prefix of πi such that πf

i = [sf , si]
b1@?[Q1]−→

s(1) · · · s(li−1)
bli

@?t[Qli
]−→ [sf , si]. Then, for any l ∈ {1, . . . , li − 1}, s(l) 6∈ (stack2 ∪ {s}) \ {sf , si}. Thus, from

Definition 17, there is a finite run πf
i

′
= si

b1@?[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ sf in M , and σ sat. πf
i

′
. Then, again

from Definition 17 and σ |= Pi(ti), πf def= [sf , s]
ai@?t[Pi]−→ si

b1@?[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ [sf , s] is a finite run in
fsf ,si(M((S\stack2∪{s})∪{sf , si}, {sf})) and σ sat. πf . Since the state [s, sf ] appeared twice in πf , πf can be

extended to the infinite run π such that π = [sf , s]
ai@?t[Pi]−→ si

b1@?[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ [s, sf ]
ai@?t[Pi]−→ si · · ·,

the state [sf , s] is an accepting state of fsf ,si(M((S \ stack2∪{s})∪{sf , si}, {sf})) and appears infinitely often
in π, and σ sat. π. Therefore, Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6= ∅ holds. 2

[⇐=] Choose arbitrary σ ∈ V al such that Lfsf ,s(M((S\stack2)∪{sf ,s},{sf})) ([sf , s], σ) 6= ∅. Then, there is an

accepting run π = [sf , s]
b1@?[Q1]−→ s(1)s(1) · · · s(l−1) bl@?[Ql]−→ s(l) · · · in fsf ,s(M((S \ stack2) ∪ {sf , s}, {sf})) such

that σ sat. π. Since the accepting state of fsf ,s(M((S \ stack2) ∪ {sf , s}, {sf})) is [sf , s] only, s(l) = [sf , s] for
an infinite number of l. Let li be the minimum indices l such that s(l) = [sf , s]. There are only the following
two cases

(a) li = 1.

(b) li ≥ 2.

For the case (a), π = [sf , s]
b1@?[Q1]−→ [sf , s] · · ·. From Definition 17, the transition s

b1@?[Q1]−→ sf exists in
M . Thus, there exists j ∈ NxtAccept such that b1 = aj , Q1 = Pj . Since σ sat. π, σ |= ∃t[Pj(t)]. Thus,
σ |= ∨

j∈NxtAccept ∃t[Pj(t)]. Therefore, from Definition 16, σ |= WPCDFS2(s, stack2, sf ).

For the case (b), let πf be the finite prefix of π such that πf = [sf , s]
b1@?[Q1]−→ s(1) · · · s(li−1)

bli
@?[Qli

]−→ [sf , s].
since σ sat. π, s(1) 6= [sf , s], and s(1) 6∈ stack2 \ {sf , s}, there exists some i ∈ Nxt2 such that b1 = ai, Q1 = Pi,

s(1) = si, and σ |= ∃t[Pi(t)]. And from Definition 17, there exists a finite run πf ′ = s
ai@?[Pi]−→ si

b2@?t[Q2]−→
s(2) · · · s(li−1)

bli
@?[Qli

]−→ sf in M such that σ sat. πf ′. Then, let πf
i = si

b2@?t[Q2]−→ s(2) · · · s(li−1)
bli

@?[Qli
]−→ sf .

Again from Definition 17, there exists a finite run πf
i

′
= [sf , si]

b2@?t[Q2]−→ s(2) · · · s(li−1)
bli

@?[Qli
]−→ [sf , si] in

fsf ,si(M((S \ (stack2 ∪ {s}) ∪ {sf , si}, {sf})) such that σ sat. πf
i

′
. Since the state [sf , si] is an accepting

state of fsf ,si(M((S \ (stack2 ∪ {s}) ∪ {sf , si}, {sf})) and [sf , si] appeared twice in πf
i

′
, πf

i

′
can be extended

to the infinite run such that πi
′ = [sf , si]

b2@?t[Q2]−→ s(2) · · · s(li−1)
bli

@?[Qli
]−→ [sf , si] · · · and σ |= πi

′. Thus,
Lfsf ,si

(M((S\(stack2∪{s})∪{sf ,si},{sf})))(si, σ) 6= ∅. From the assumption of induction, σ |= WPCDFS 2(si, stack2∪
{s}, sf ). Therefore, σ |= ∨

i∈Nxt2
∃t[Pi(t)∧WPCDFS 2(si, stack2∪{s}, sf ). From Definition 16, σ |= WPCDFS2(s, stack2, sf ).

2

A.2 Proof of Lemma 2

We prove that “for any σ ∈ V al, σ |= WPCDFS 1(s, stack) iff Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅” by induction of
depthg(M)(S\stack ,F\stack)(s).
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[Case of depthg(M)(S\stack ,F\stack)(s) = 0]

[=⇒] Since depthg(M)(S\stack ,F\stack)(s) = 0, g(M)(S \ stack , F \ stack) has only one state s. Thus, from
Definition 16, Nxt = ∅ and result = false. If s 6∈ F , then WPCDFS1(s, stack) = false. Therefore, clearly, for
any σ ∈ V al, σ |= WPCDFS 1(s, stack) implies Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅.

Suppose s ∈ F . Then, WPCDFS1(s, stack) = WPCDFS 2(s, ∅, s). Choose arbitrary σ ∈ V al such that
σ |= WPCDFS 1(s, stack). Then, σ |= WPCDFS2(s, ∅, s). From Definition 18, there exists a transition

s
β@?t[WPCDFS2(s,∅,s)]−→ s. Thus, s

β@?t[WPCDFS2(s,∅,s)]−→ s · · · is an infinite accepting run of g(M)(S \ stack , F \
stack). Therefore, Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅. 2

[⇐=] If s 6∈ F , Lg(M)(S\stack ,F\stack)(s, σ) = ∅ since g(M)(S \ stack , F \ stack) has only one state s. Therefore,
clearly for any σ ∈ V al, Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅ implies σ |= WPCDFS 1(s, stack).

Suppose s ∈ F . Choose arbitrary σ ∈ V al such that Lg(M)(S\stack ,F\stack)(s, σ) 6= ∅. Then, there exists an

infinite accepting run s
a@?t[P ]−→ s · · · such that σ |= P . If a = β, then from Definition 18, P = WPCDFS2(s, ∅, s).

Since WPCDFS 1(s, stack) = WPCDFS 2(s, ∅, s) if s ∈ F , σ |= WPCDFS 1(s, stack). If a 6= β, then from

Definition 18, the transition s
a@?t[P ]−→ s is in M . Thus, LM(S\stack ,{s}\stack)(s, σ) 6= ∅. By Corollary 3, σ |=

WPCDFS2(s, ∅, s). Since WPCDFS1(s, stack) = WPCDFS2(s, ∅, s) if s ∈ F , σ |= WPCDFS1(s, stack). 2

[Case of depthg(M)(S\stack ,F\stack)(s) = k + 1]

[=⇒] Choose arbitrary σ ∈ V al such that σ |= WPCDFS 1(s, stack). Suppose s 6∈ F . Then, there exists

i ∈ Nxt and ti ∈ R+ such that s
ai@?t[Pi]−→ si in M , σ |= Pi(ti), and σ |= WPCDFS1(si, stack ∪ {s}). From the

assumption of induction, Lg(M)(S\(stack∪{s}),F\(stack∪{s}) (si, σ) 6= ∅. Thus, there exists an accepting run πi =

si
b1@?t[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ s(l) · · · in g(M)(S\(stack∪{s}), F \(stack∪{s}) such that ∃sf ∈ F [s(l) = sf ] for

an infinite number of indices l and σ sat. πi. Then, let π = s
ai@?t[Pi]−→ si

b1@?t[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ s(l) · · ·.
Clearly, π is an accepting run of g(M)(S \ stack , F \ stack). Therefore, Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅.

Suppose s ∈ F . If σ 6|= WPCDFS 2(s, ∅, s), then the proof is the same as the case s 6∈ F since σ |=∨
i∈Nxt ∃t[Pi(t)∧WPCDFS1(si, stack ∪{s})]. If σ |= WPCDFS2(s, ∅, s), then from Definition 18, there exists a

transition s
β@?t[WPCDFS2(s,∅,s)]−→ s in g(M)(S\stack , F \stack). Thus, s

β@?t[WPCDFS2(s,∅,s)]−→ s · · · is an accepting
run of g(M)(S \ stack , F \ stack) under σ. Therefore, Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅. 2

[⇐=] Choose arbitrary σ ∈ V al such that Lg(M)(S\stack ,F\stack) (s, σ) 6= ∅.
Then, there exists an accepting run π = s

b1@?t[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ s(l) · · · of g(M)(S \ stack , F \ stack)
such that ∃sf ∈ F [s(l) = sf ] for an infinite number of indices l and σ sat. π. Since the set of states of
g(M)(S \ stack , F \ stack) is S \ stack , s(l) 6∈ stack for any l.

Suppose s 6∈ F . Let l′ be the minimum index l such that s(l) = sf ∈ F . Since s(l) 6∈ stack for any l, sf ∈
F \stack . Without loss of generality, we assume that s(l) 6= s for any l ∈ {1, . . . , l′}, since if there exists some l′′ ∈
{1, . . . , l′} such that s(l′′) = s, we can replace π with another accepting run s

b1@?t[Q1]−→ s(1′′+1) · · · s(l−1) bl@?t[Ql]−→
s(l) · · ·. Moreover, since Lg(M)(S\stack ,{s(l′)})(s

(l′), σ) 6= ∅, by Proposition 5, LM(S\stack ,{s(l′)})(s
(l′), σ) 6= ∅. Since

adding states does not affect non-emptiness, LM(S,{s(l′)})(s
(l′), σ) 6= ∅. By Corollary 3, σ |= WPCDFS2(s(l′),

∅, s(l′)). Therefore, without loss of generality, we assume that s(l) 6= s for any l ≥ l′ + 1, since if not, we

can replace π with another accepting run s
b1@?t[Q1]−→ s(1) · · · s(l′) β@?t[WPCDFS2(s

(l′),∅,s(l′))]−→ s(l′) · · · such that

σ sat. π. Thus, we safely assume that there is an accepting run π = s
b1@?t[Q1]−→ s(1) · · · s(l−1) bl@?t[Ql]−→ s(l) · · ·

of g(M)(S \ stack , F \ stack) such that for any l, s(l) 6∈ stack ∪ {s} and σ sat. π. From Definition 16, there

exists i ∈ Nxt such that ai = b1, Q1 = Pi, si = s(1), and s
ai@?t[Pi]−→ si in M since si 6∈ stack ∪ {s}. Moreover,

there exists ti ∈ R+ such that σ |= Pi(ti) since σ sat. π. Let πi = si
b2@?t[Q2]−→ s(2) · · · s(l−1) bl@?t[Ql]−→ s(l) · · ·.

Then, σ sat. πi, si 6∈ stack ∪ {s}, s(l) 6∈ stack ∪ {s} for any l, and sl = sf ∈ F \ stack for an infinite
number of indices l. Thus, πi is an accepting run of g(M)(S \ (stack ∪ {s}), F \ (stack ∪ {s})). Therefore,
Lg(M)(S\(stack∪{s}),F\(stack∪{s}))(si) 6= ∅. From the assumption of induction, σ |= WPCDFS1(si, stack ∪ {s}).
Since s

ai@?t[Pi]−→ si in M and σ |= Pi(ti), σ |= ∃t[Pi ∧WPCDFS1(si, stack ∪ {s})] for i ∈ Nxt. Therefore, from
Definition 16, σ |= WPCDFS1(s, stack).
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Suppose s ∈ F . If sf 6= s then the proof is the same as the case s 6∈ F . Otherwise, Lg(M)(S\stack ,{s})(s, σ) 6= ∅.
By Proposition 5, LM(S\stack ,{s})(s, σ) 6= ∅. Since adding states does not affect non-emptiness, LM(S,{s})(s, σ)
6= ∅. By Corollary 3, σ |= WPCDFS2(s, ∅, s). Therefore, from Definition 16, σ |= WPCDFS1(s, stack). 2
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