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Abstract

In the development of real-time communicating hardyeréedded-software
systems, it is frequently the case that we want to rédipimize the system’s in-
ternal behavior while preserving the external timga behavior. In such a design
refinement, modification of the systems’ internal branching structures, as well as
re-scheduling of internal actions, may frequently occur. Our goal is, then, to en-
sure that such modification of internal branching structures and re-scheduling of
internal actions preserve the systems’ external timed behavior, which is typically
formalized by the notion of (timed) failure equivalence since it is less sensitive to
the diference of internal branching structures than (timed) weak bisimulation. In
order to know the degree of freedom of such re-scheduling, parametric analysis
is useful. One of the models suitable for such an analysis is a parametric time-
interval automaton(PTIA), which is a subclass of the existing model, a parametric
timed automaton. It has only a time interval with upper- and lower-bound param-
eters as a relative timing constraint between consecutive actions. In this paper, at
first, we propose an abstraction algorithm of PTIA which preserves timed failure
equivalence. Timed failure equivalence is strictly weaker than timed weak bisim-
ulation in the sense that it does not distinguish thfedénce of the timing when
the internal resolution of nondeterminism has occurred, but it does distinguish the
difference of the refusals of communicating actions observed by an external en-
vironment. Then, we also show that after applying our algorithm, the reduced
PTIA has no internal actions, and thus the problem deriving a parameter condition
in order that given two models are timed failure equivalent can be reduced to the
existing parametric strong bisimulation equivalence checking.

Keywords: real-time communicating systems, parametric timed automata, equiv-
alence checking, timed failure equivalence, abstraction

1 Introduction

In recent years, arfiective development methodology for embedded-hardisaftvare

with real-time constraints is desired. Precise implementation of timing constraints for

I/O behavior is becoming important not only in embedded systems like mobile phones
but also in infrastructure systems for transportation, medicine, finance and defense.
For such real-time systems, it is important to verify the equivalencg¢@ftiming



behavior between the initially designed specification and its refined implementation.
In such a refinement process of the system development, it is frequently occur that
the formally specified nondeterministic branches in the specification are refined to de-
terministic ones. Such an implementation may be done by using if-then-elga and
switch-case statements of some imperative programming language such as C, Java,
etc. (for softwares), or VHDL, Verilog, etc. (for hardwares), and so on. However,
in such an implementation the initially specified branching structure may be modified
when it is viewed as a real-time communicating behavior, which is generally important
for embedded systems containin@ lactions. For example, a nondeterminisic branch

of some JO actionsa,b andc (these actions can be considered to g@ydctions such

as reagivrite to I/O ports of some devices, and so on) in the initial specification may
be implemented to the if-then-else statements such as “if (conditionl)atle¢se if
(condition2) therb elsec”. In this case, when we view the real-time communicat-
ing behavior of the implementation, the decision whether the actiisnexecuted or

not is already made after the time that the conditionl is evaluated. In the verification
of equivalence between the specification and the refined implementation, we want to
consider these behaviors as equivalent.

Some theoretical works on equivalence for real-time communicating systems while
considering unobservable internal actions are proposed so far. Timed weak bisimu-
lation equivalence was proposed to determine equivalence of processes considering
both time and observability[9], but as pointed out in [4], timed weak bisimulation may
not be suitable for equivalence checking of real-time systems when branching struc-
tures of a specification are modified in the implementation. Global timed bisimulation
equivalence[4] is weaker than timed weak bisimulation equivalence and is less sensitive
to the modification of branching structures. Unfortunately, global timed bisimulation
equivalence is still too strong compared to timed failure equivalence[16, 3, 15]. Timed
failure equivalence is considered to be dfisient criterion of correct refinement of
practical communicating systems in the sense that if two (finite state) systemd
Q are timed failure equivalent, then for any (finite state) external environRethte
composed communicating systemRandR behaves equivalently to that @f andR.
Therefore, we adopt timed failure equivalehas the refinement relation between a
specification and its refined implementation.

Moreover, it would be useful if we put real-time constraints containing parameters
(e.g. upperiower-bounds), and derive automatically the constraint (e.g. the minimum
or maximum value allowed) of parameters in which the equivalence is preserved. Such
an analysis is called a parametric analysis[2, 17]. Parametric analysis is especially use-
ful when the equivalence of the system strongly depends on the timings on its actions
and we need to tune the timings to preserve the equivalence. Otherwise we need to
do such a tuning in a try-and-error manner, that is, we fix all the timing parameters to
some set of values, check the equivalence, and if it is failed, try again for another set of
values, and so on. This is generally tedious.

To make such equivalence checking feasible, we abstract away the data dependent
part of such an implementation and focus on the control part only. To capture the
control flow of such system’s specification and implementation with time constraints
and perform a parametric analysis, we propose a parametric time-interval automaton
(PTIA), which is a subset of a parametric timed automaton[2] having only a time in-
terval with upper- and lower-bound parameters as a relative timing constraint between

1There are several variants of timed failure equivalence, some of those considgutitinedd-stability,
finite/infinite time refusals, nonzeno-condition, and so on[3, 15]. In this paper, we disregard tfiesendes
and adopt the simplest definition of timed failure equivalence.



consecutive actions. We show that timed failure equivalence checking for PTIAs can
be reduced to existing parametric strong timed bisimulation equivalence checking.

There are some proposals of parametric equivalence checking for communicating
systems. For bisimulation equivalence without time, parametric str@adk bisimula-
tion equivalence checking algorithms on STG (Symbolic Transition Graph) and STGA
(STG with Assignment) are already proposed[6, 11, 10]. For timed strong bisimulation
equivalence (bisimulation equivalence where both time and all actions are considered
observable), parametric equivalence checking is proposed in [14]. However, as far as
we know, parametric equivalence checking algorithm has not been proposed for any
other time related equivalence, even for timed weak bisimulation equivalence (bisim-
ulation equivalence where time is considered observable and internal actions are not
considered observable).

In this paper, we propose a method to abstract away tfierelnce of branching
structures of internal actions from a given real-time communicating system model writ-
ten in a PTIA, while preserving timed failure equivalence. Specifically, the proposed
method convert a given PTIA that may contain some internal actions into the PTIA
which does not contain any internal actions and is timed failure equivalent to the given
PTIA. Here, in this paper we assume that the given PTIA does not contain any loops
(i.e. its transition graph is a DAG(Directed Acyclic Graph)), its initial action must
be an observable action, and every internal actioobiservably boundedhat is, it
must appear between some observable actions in any action execution sequences. By
combining the proposed abstraction method and the parametric timed strong bisimula-
tion equivalence checking method proposed in [14], we can perform parametric timed
failure equivalence checking.

The rest of this paper is organized as follows. In Section 2, we define the PTIA
model and its operational semantics by defining a mapping from the model to a timed
extension of labelled transition system (timed LTS). Section 3 describes the defini-
tion of timed equivalences on the timed LTS, including timed failure equivalence. We
propose a transformation algorithm on the PTIA and prove that the transformation pre-
serves timed failure equivalence in Section 4. In Section 5, we propose a parametric
timed failure equivalence checking algorithm. Conclusions and future directions are
given in Section 6.

2 Parametric Time-Interval Automata

Let ActandVar denote a set of actions and a set of variables, respectively. We denote
the set of all real-numbers Hy and the set of all non-negative real-numbersRiy

LetNg [N] be the set of all natural numbers including O [excluding O, respectively]. Let
Intvl(Var) denote a set of formulas of the form eitlgdr< t,t < €2, orel <tAt < e2,
whereel ande2 are linear arithmetic expression (that is, only addition and subtraction
are allowed) over variables Mar \ {t} and constants iR, andt € Var is the special
variable representing the elapsed time since the latest visit of the current control state.

Definition 1 A parametric time-interval automat@@a tuple(S, {t}, PVar, E, snit), where
Sis afinite set otontrol stategalso referred to asocationg, t € Var is theclock vari-
able PVar C Varis a finite set oparametersE C S x (ActU {r}) x Intvl(Var) x S is
a transition relation,sp;; is the initial state. Note that represents arnternal action

On the other hand, every other actionAtt represents awbservable actian/Ve write

Sa@ﬂf’l sjif (s,a P, sj) € E. O



o P .
Informally, a transitions, iy s; means that the actioa can be executed from

s when the values of both the clock variattland parameters satisfy the formuta
(called aguard conditior), and after executed, the state moves igit@nd the clock
variablet is reset to zero. In any stat the value of the clock variableincreases
continuously, representing the time passage.

Formal semantics of parametric time-interval automata is similar to that of the para-
metric timed automata, which is defined as follows. The values of clocks and param-
eters are given by a functian : ({t} U PVar) —» R. We refer to such a function as a
value-assignmeniVe represent a set of all value-assignment¥ by We writeo = P
if a formulaP € Intol(Var) is true under a value-assignmente Val. The semantic
behavior of a parametric timed automaton is given as a semantic transition system on
concrete statesA concrete state is represented Byof), wheresis a control state and
o is a value-assignment. L&S def {(s o)|ls e S, o € Val} be a set of concrete states.
The semantic model istaned labelled transition system (timed LT®hich is defined
as follows. A state of atimed LTS is a concrete stat€ 81 A transition of a timed LTS
is either adelay-transitionor anaction-transition A delay transition represents a time
passage within the same control state S, whereas an action transition represents an
execution of an action which changes the control state to the nexd ofr@rmally, a
timed labelled transition system is defined as follows.

Definition 2 Atimed labelled transition syste¢atimed LTSfor short) for a paramet-

ric time-interval automaton is a labelled transition systé@s, Actu R* U {1}, CE,

(snit> oinit [t — 0])), where a set of states@S, a set of labels i®\ctUR* U{7}, an initial

state is(Snit, oinit[t — 0]), and a transition relatiolCE € CS x (ActUR* U {r}) xCS

is defined as the minimum set that satisfies the following conditions (in the following,

we write(s, o) N (s,0)if ((s,0),1,(s,0")) € CE):
e (50)— (so+v)ifveR",

o (50) 5 (3,0t — O]) ifac Actur}, s 2% ¢, ando | P,

whereo + v andot — 0] are the value-assignments derived fromwhich is defined
as follows:

For x e PVaru {t}

def o(X)+v if xe{t},
(T+o)( = { o (x) otherwise.

o 0 if x € {t},
(lt— 0 & { o(X) otherwise.

3 Timed Equivalences

In this section, we briefly recall the definition of timed failure equivalence[16, 3, 15],
as well as the definition of the traditional timed weak bisimulation equivalence[1, 9]
and its relation to timed failure equivalence.



3.1 Timed Weak Bisimulation Equivalence

In this section, we will briefly give the definition of timed weak bisimulation equiva-
lence.

Definition 3 For any @ € ActuU {r} U R*, a timed weak transition relatioaéw is
a binary relation on states of a timed LXES, Actu R* U {1}, CE, (s, 00)), that is
defined as follows:

1 :"> def

0
w= (_> U ;>)*

2. (50) =, (5,0") W € RY)
def Aoy, vz, ., tn €RY [0 =21 0
NS, 01,07, $,02,0%, ..., S, 0n, 0
St (s0) = (SL.01) = (S1.07) =y (Sn.0m) —
(Sn.0h) =0 (S.07) ]

a T a T
3. =, (aeAct) def ==, O

By using this transition relation, timed weak bisimulation is defined as follows:

Definition 4 A binary relationR on states of a timed LTS igianed weak bisimulation
if the following condition hold:
If (s1,01)R(S2, 072), then for anyr € ActU R* U {1},

1V 8,04 (s1.01) =, (S.07) =
38}, 07 [ (S2,072) =0 (S5, 0%) A (S, TDR(S, 05) 11,

and,

2. ¥ S 03] (S2.02) =y (S.0%) =
3s;, 0 [ (s1,01) = (51,09) A (8, PR(S,, 05) 1]

We say that stategs;, o1) and (sp, o2) are timed weak bisimulation equivalent
denoted by(s;, o1) =wb (S, 02) if and only if there exists a timed weak bisimulati®n
such that(s;, 1) R(s, 02). O

3.2 Timed Failure Equivalence

Timed failure equivalence is a kind of equivalence between two (possibly nondetermin-
istic) communicating processes such that their possibilities of communication failures
are equivalent. Similar to many process algebras such as CCS[13], CSP[8], etc., we
abstract every communication to the synchronization (rendezvous) of actions with the
same action label (name) performed by multiple concurrent processes. That is, a com-
munication happens between two proceBemd Q if they perform the same action
simultanously. We say that an actiann a process is offeredfor communication if

some other process in the external environmerR of ready to perforna and expect
thatP also performs. An offered actiora is calledrefusedby P if P cannot perform

a when dfered. A communication failure occurs if the external environment has ob-
served some sequence of actions performe® bynd it dfers some expected actian

but P refuses it. This kind of communication failure possibility can be formally de-
scribed by the pairt{acerefusa), where araceis an observed sequence of performed



actions byP by now and aefusalis a set of actions that may be refusedfbgftertrace

has been observedtailure equivalencdor testing equivalendg], an operational se-
mantic view of the failure equivalence by the notion of test), is an equivalence between
(untimed) communicating processes that such possiblities of communication failures
are equivalent. Since we consider nondeterminism, it is possible that traces are the
same and refusals ardfiddirent. Hence, failure equivalence is generally finer thace
equivalencethat is, the language equivalence in the traditional automata theory where
any states are considered the accepting states. For timed communicating processes, we
have to extend the notion of failure to the corresponding timed one. Several such ex-
tensions have been proposed in [7, 16, 3, 15, 12]. In this paper, we adopt the definition
that is slightly modified from that of [16] for simplicity. Intuitively, amed failureis a

pair timed tracetimed refusal, where aimed traceis an observed sequence of tuples

of a performed action and its observed absolute time (the elapsed time from when the
system has started), andimed refusals a set of tuples of a set of refused actions and
the absolute time it is refused. The formal definition is as follows.

Definition 5 (Timed Failures) LetTA def {(t,a)|t € R*,a € Act} denote the set of all
timed actionsLetTT € {(((t;, a1) - - - (te, @)K € NoVi € {1,....K}, (t,&) e TAVi, | €
{L....kL( < j) = (t < t;)} denote the set of alfinite) timed traces Let TR %'

{RIR € R* x Act} denote the set of alimed refusalsThen, the set of atimed failures
is denoted byl F L {(w, X)lw e TT,X € TR). O

Definition 6 (Notations for Timed Traces and Timed Refusals)Forw € TT, we de-
note the length of as|w|, that is, |w| e K if w = {(ty,a1) - - - (tk, &)). For X € TRand
te R, X+t Lt +t,a)(t,a) e X]. O

Definition 7 (Timed Failures of Concrete States of Timed LTSs)For any statds, o) €
CSofaTimed LTSCS, ActUR* U{r}, CE, (Snit. oinit[t = OI)), TT((s o)) €' {{(t, @)

t
o (toa)) | IS, S0 S, S €S 0w, 00,0 € Val (S0) =3,

k—tk-1

(50.01) = (Sp0%) (S0l ) =5 (Se0i) = (S0} TR(s.0) &
{t,a))t € R*,a € Act—[3s,s” € S, Jo’,0” € Val s.t. (s0) _—t>w (s,0) :a>w
(s”, o)}, andT F((s, o)) L {(((t2, a1) - - - (tk @)Y, X) | Mis1 € R* ASp,..., Sea1, S}y -5 S, €

1 aq te—tk-1
S do1,...,0%1,0%, ..., 0 €Val (8,0) =, (S1,01) =0 (S, 07) - (S 1, Th1) = w

1T

ax
(S(? O-k) —u (q(’ O-,k) —w (SK+l’ O-k+l) AX = TR((SM-L O-k-+-l)) + tk+l}}- ]

Definition 8 (Timed Failure Equivalence) We say that concrete statés;, o;) and
(2, 02) are timed failure equivalentdenoted by(s;, 01) =i (S, 02) if and only if
TF((s1, 1)) = TF((s2, 02)). m

As for the relationship between timed weak bisimulation and timed failure equiva-
lence, the following proposition holds.

Proposition 1 For any two state$s;, o1) and(s;, 02) of a timed LTS, i{s1, 01) =tup
(S2,02), then(sy, o1) =it (S2, 072). O
4 Abstraction Algorithm

In this section, we propose some abstraction rules to eliminate internal actions of the
PTIA, and show that their rules preserve timed failure equivalence.



In the following, first, we describe some restrictions on PTIAs which ensure the
correctness of the proposed abstraction rules. Then, we describe the key idea and the
details of the proposed abstraction rules. Finally, we show that the abstraction rules
preserve timed failure equivalence.

4.1 Restrictions for Parametric Time-Interval Automata

In order to apply our proposed abstraction rules, we impose the following restrictions
[RLoopFree], [RInitStability], and [RObsBounded] for an input PTNA

[RLoopFree] M contains no loops, that is, the transition graptvbis a DAG.

[RInitStability] The initial statesp; of M must be either atablestate, or reachable
to a stable state by deterministic internal transitions (i.e. there are no branches
along a path from the initial state to a stable state). Hestalalestate is a state
whose every outgoing transition is observable.

[RObsBounded] Any internal transition contained iW is observably boundedhat
is, for any execution path of M, there exists an extensiar of the pathr in
that any internal transition is appeared between some observable transitions.

. . t[P . . .
Formally, an internal transmoaTﬂ] s contained inM is observably bounded

. . AP APy P]
if for any transition sequencgit « QP S1 St w@API TPl o (k € No,

ai,...,ax € ActU {t}, Py,..., P P € Intvl(Var)) of M, there exists somee

- A[P] X
{1,...,k} such that; € Act, and for any transition sequensé%] g e

S+ Sme1 ﬁm@gk] Sn(me Ng,B1,...,Bm € Actu{t}, Qu, ..., Qn € Intvl(Var)),

. . ,Bm+1@”T[Qm+1] ﬁmﬂ@’a[QmeI]
there exists an extension of the sequesce  — Sl Smwle1 | —

Smel (I € No, Brs1s -+ - Bmal € ActU {1}, Omy1, - .., Qmu € Intol(Var)) and there
exists somg € {1,...,m+ |} such thap; € Act

4.2 Abstraction Rules for Parametric Time-Interval Automata

For any internal transition that directly follows some observable transition, we can
eliminate the internal transition based on the following principles:

1. The internal nondeterminism caused by the internal transition can be converted
into the corresponding nondetermistic choice of the directly preceding observ-
able transition, just the same as the classical equational theory of testing equivalence[5].

2. On the contrary, the time passage caused by the internal transition can be moved
into those of the directly succeeding transitions which are either internal or ob-
servable.

This is the key idea for preserving timed failure equivalence. Since any internal action
is observably bounded, by the restriction [RObsBounded], the sequence of internal
actions can be completely eliminated from the beginning internal action (which directly
follows some observable action) to the ending one (which is directly followed by some
observable action).

However, if we want to transform some subgraph of the entire transition graph
of M, we must ensure that such a subgraph transformation preserves equivalence of
the entire transition graph. To make the discussion simple, we impose the restriction
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Figure 1: Congruence Property w.r.t. Timed Failure Equivalence

[RLoopFree]. By this restriction, we focus on the case that the transition graph is a
DAG. Furthermore, we prove that if the context of the subgraph under transformation
is in some form, such subgraph transformation preserves equivalence of the entire tran-
sition systemM. To ensure that all internal transition can be eliminated by such a
context-sensitive transformation, we need the restriction [RInitStability].

The proposed abstraction rules are the followings:

1. abstraction for sequential structures
2. abstraction for branching structures

The details are described in the following sections.

4.2.1 Context Sensitivity of Abstraction Rules

Consider that some subgraphy, of the entire transition graph of PTIM is replaced
into some equivalent subgraph, .. Such a transformation does not always preserve
equivalence of the entire transition graph. We will show tha¥if,, appears in the
context shown in Fig 1, then the subgraph transformation fiib, to M¢, , preserves
timed failure equivlaence

Theorem 1 (Congruence Property w.r.t. Timed Failure Equivalence)Let M = (S,
{t}, PVar, E, spnity be a PTIA, ands;, s, € S which have no incoming transitions
from some stats that is reachable frons; ands; in M. Let$; and $ be new states

obtained by adding the same observable branck tand s, that is, $; @l sz and

a@7 i . A
6 T s fora e Act s5 € S, P e ntl(var), § " 8 if 5 " g for

B € ActU {7}, Q; € Intl(Var), and $ PO s if PO s, for g € Actu {1},

Q: € Intvl(Var).

Then, for anyr € Val, ($1,0) =it (%, 0) if (S1,0) =t (S, 0).
Proof. ~ We will only prove thaflT F(($,0)) € TF(($%,0)), since the converse is
similar by symmetry and hence the theorem will be proved. Choose arbitrary timed
failure (w, X) € TF(($, 0)). We will show thafw, X) € TF(($, 0)). w € TT(($, o))

can be expressed as = ((t;,a1) - - - (t, a)) for somek € N, t,...,tx € R*, and

.. N t -t e
a,...,a € Act From Definition 7,8, o) =, =, (Y, cl)) 5, =, .- =",

tys1—1
2, (9, 0% '=*, (D, o%D) for somety,s € R, Y., € s, and



o, o%D e val. From the definition of, either (O)k = 0, that is,w = ()
(the empty trace) an). X) € TF(($..0)), (1) (s1.0) =2,=5, (§2.0), or (2)
(1. 0) ==, (s3. o) holds.

For the case (0)($., o) —=., SV, M) and X = TR(SY, o)) + t hold. If
s = s, then obviously((), X) € TF((&,)) holds becaus¢s, o) = (% o)
and TR(SY, otM)) = TR((s3, 0\M)). Otherwise, from the definition &, (s1, ) =,
(8P, tM) holds. Then, sincés;, o) = (s2.0), ((),X) € TF((s2,07)) holds and
thus there exists somézl) € S and 0-(21) € Val such that(s;, o) éw (3(21), 0-(21))

t
and TR(SY, o) = TR(SY, olM)). Then, from the definition o, ($,0) =,
(S, o). Therefore((), X) € TF((%, ).

For the case (1), we can assume tls%?t + § foranyi € {1,...,k + 1}, because
otherwise, from the assumption that there no incoming transitions from some state
s that is reachable froms;, k = 0 must hold and the proof is reduced to the case
(0). Then(s¥*D, %Yy is reachable from(sy, ). Thus,w € TT((sy, o)) and X =
TR(SY, o)) + tie1. Hence,(w, X) € TF((s1,0)). From the assumption that
(s1,0) =it (s2,0) and Definition 8,(w, X) € TF((s,0)). Thus, from Definition 7,

. t
there exists somg?, ..., & o0 4D syuch that(sy, o) =, =, (S, oD)

t—tk— ak K K tera—tk k k k k: k
==, (W, 00 =, (9D, o)y and TR(SKY, o &) = TR(SMY,

b-tc1 &

. e ~ t
o-(lk+1))). Then, from the definition of,, ($,0) =1>wi>w g(l), 0-(21)) s > =

(W, o) faas (5, 44Dy also holds. Hencew, X) € TF(($, o).

Similarly, (w, X) € TF((%, o)) can be proved for the case (2).

Hence, TF(($1,0)) € TF((%,0)). By symmetryT F(($,0)) € TF(($,0)) also
holds. Therefore($;, o) =it (%, 0).

4.2.2 Abstraction for Sequential Structures

The abstraction for sequential structures is illustrated in Fig. 2. In the left half of
. - T@A[X<t<yy]
Fig 2, the transitiors, ai

@A[x1<t<y1] . -

TS 5, is observable. Its sibling,

Y@A[X4<t<ys]
-

sz is internal and its directly preceding transition

@A[xz<t< . .
PO o and its directly succeed-

ing transitionss S may be either internal or observable. In this case,

A[xo<t< . .
we eliminate the internal transitios @ [X—2<>t<y2] s3 as the right half of Fig 2. In

this abstraction, the nondetermistic behavior of the eliminated internal transition is

converted into the nondeterministic choice of the directly preceding observable tran-

. @A[x1<t< @A[x1<t< .
sitions s, Dastsy] s, ands; © Dasty] ss. On the other hand, the time passage

of the eliminated internal transition is merged into the directly succeeding transitions
Y@ A Xo+X4<t<y2+y4] Y@A[Xo+X4<t<y2+ys]
- andsz —

Formally, the operation for merging two time intervals is defined as follows:

Definition 9 @ is a binary operator orintvl(Var) such that for any, Q € Intvl(Var),
(POQ)(®) 'y, o[ P(ts) A Qltz) At =t +2]. O

Then, the following lemma holds:



a@A[x stsy] a@A[x st<y]

a@Ax <ts<y]

FOx <1<yl p@Ax <ty

@5/ T@?[x, <t<y,] @5/ y@2A[x, +x, <t<y, +vy,]

y@x, +x,st<y,+y,]
y@x, sts<y,]

@9‘/ Da 0 Act

0B, y0ActO{r}

Figure 2: Abstraction for Sequential Structures

Lemmal Leta € ActandpB,y € ActU {r}. LetM and M’ be PTIAs whose sets

. a@72[Pq] r@?t[Pz] B@A[P5] Y@2[P4]
of transtions are{ 5, — S, & 2SS — %8 — $)and
0@71 P1] 0@"‘["1] ﬁ@"‘[P3] Y@A[P20P,] Y@A[P,OP,]
{s S S5 S %S — %8 — S,

respectively. Then, for any assignment VaI (s1,0) =1 (S}, 0).

Proof. Choose arbitrary timed failuréw, X) € T F((s1, o). We will show thafw, X) €

TF(s;,0). w € TT((s1,0)) can be expressed as = {(t1,a1) - - (i, a)) for some
k € Np, t1,...,t%x € R, andal,...,ak € Act. From Definition 7,(s, o) éw %w

(€D, o) kN . N (9, W)= et o (S, &) for somety,s € R,

s‘ll), e s(lk+l) €S ando-(ll), . (k+l) e ValandX = TR(( (k+l) (1k+1))) + tge1. From
the definition ofM, a; = « if k > 1 anda, may beg [v] |f k > 2andg [y, resp.] is
observable (i.e8 € Act[y € Act, resp.]).

[Case ofk = (]

If k = 0, thenw = () and X = TR(S”, (")) + t;. From the definition oM, s = sy,

oD = ot — t], and TR((s1, ot — 1)) = (V. @)la € ActA =[(a = @) A (o]t —

ty + '] E P1)]}. ThusX = TR((s, o1t — t1])) + t1 = {(t1 + t', @)la € ActA =[(a =

a)A(oft = t1+t'] E Py)]}. Then, from the definition ofl’, (s}, o) éw (s, ot = ta])

and (w, X’) € TF((s},0) whereX” = TR(s;,oft — t1])) +t1 = {(t1 + V', a)la €

ActA —[(a=a) A (o[t — ty + '] E P1)]} = X. Therefore(w, X) € TF((s;, 0)).

[Case ofk = 1and B,y € Acf]

If k = 1andg,y € Act, thenw = ((t, @)), o-[t S tlEPLSY =5, 0 =0, Pis

eithers, or s3, and(s1, o) == u = (S, ) =, (S, oM.

If 9 = s, thenol? = ot — to — 1] and X = TR(S, o[t = to —t])) + 1 =
{(to+t',a)lae Acta —|[(a =) A (o[t > ta -ty +t'] E P3)] A=[(a=y) AT, Gt =
t+ 1) A (ot = to—to+ 4] F P2) A (ot - 1] E Pa)]l). Since(s), o) =,=5,,
(sz 7) B, (S0t > o~ 1)), (. X) € TF(S,, o)) whereX’ = TR(S,. o[t —
t-t])) +t2 ={(t+t,a)lac ActA=[(a=B) A (ot > t2—ta +t'] E P3g)] A=[(a=
MA(o[t = to—t1+t'] E P2OP4)]}. Since(P20P,)(t) = Its, taft = t3+t4AP2(t3) AP4(ts)]
and 3, t[(t" = t] + ) A (oft = t2 =ty + t]] E P2) A (o[t — t5] | P4)] if and only
if ot > to -t + '] E g, t4ft = t3 + t4 A Pa(ts) A Pa(ts)] for any tp,t' € R*,
X ={(ta+t,a)lac ActA=[(a=pB)A (o[t > ta—t1 +t'] E P3)]A-[(a=y) A (o[t —
-t + t/] E dts, t4[t =13+t A Pz(t3) A P4(t4)])]} =X ThUS,(w, X) eT F((S&, O’))
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5(12) s, then there exists sontg e R* such thato-[t -t -t] E Py, 0'[t -

to— ] E Pa, 0 = ot = t, ~ ], (51, 0) === (52,0) 2 (spolt— ) =,
(s3, 0t > to— t 1), andX = TR((sg, ot > t-t]) +t2 = {(b+t",a)lac Acta-[(a=
)/) A (0’[t - tg—t' +t’] E P4)] SInCGO'[t - t' —t]_] E P anda'[t -t -t ] E Py

for somet; € R, ot — t, — ;] = P,0P, holds. Thus(s], o) ===, (S5, o) 23,

(S}, ot = t2 — t4]) holds. Moreover(w, X) € TF((s;, o)) whereX’' = TR((S], ot —
t-t]) +t={( +t,a)ae ActAr -[(a=y) A (ot = o —t1 + '] E P2OP)]} =
{(to +t,a)a € ActA —[(a = y) A tg, t4f(t —t1 = 3+ 1) A (ot = t3] E P2) A
(o[t — tg] = P4)l]}. By lettingtz = t] -ty andty = t —t}, X' = {( + V', @)la €
ActA-[(a=y)Adt[(ot = t] -t1] E Pz) Aot = t2 = t]] |= P41} = X. Therefore,
(w, X) € TF((S,, 7).

Similarly, we can prove thafw, X) € TF((s;,0)) ifk > 2,8 =1, 0ry = 7.
Therefore,T F((s1, o)) € TF((S], 0)).

Conversely, choose arbitrary timed failu(e, X) € TF((s;,c0)). We will show
that (w, X) € TF(s;,0). Similar to the proof ofT F((s;,0)) € TF((s}.0)), w =
((t1,a1) - - - (tk, &)) for somek € Ng, t1,...,t%« € R*, and al,...,ak € Act From
Definition 7,(s], o) =, = (P, o) i N . CRRED! faazk
(sl(k*l) &1 for somety,; € R*, s’l(l),...,s’l(k*l) e Sanddi®, ... o-(lk*l) e Val and

(tk+1+t a)l(t,a) € TR(S Y, %1))}. From the definition oM’, a; = e if k > 1
and a; may bes [y] if k > 2 andﬁ [y, resp.] is observable (i.e§ € Act[y € Act,
resp.]).

[Case ofk = 0]

If k = 0, thenw = () and X = {(tz + ', AI(t’, ) € TR, o'M))}. From the definition
of M, s = 5, oY = o[t — 1], and TR(S], or1[t — t1])) = {(t’, @)la € ActA —[(a=
a) A (o-[t -t + t] E Pl}. ThusX = {(t1 + t',a)|(t",a) € TR(S,.o1[t — t1]))} =
{(ty+t,a)lae ActA—[(a= a) A(o[t — t1 +t'] E P1)]}. Then, from the definition dfl,
(81,0) éw (s1, 0t — t1]) and(w, X’) € TF((s1,0) whereX’ = {(t; + t',a)|(t’,a) €
TR(si, ot = )} = {(tu + V', a)lae Acta -[(a=a) A (o[t = t1 + '] E P1)]} =
Therefore (w, X) € TF((s1, 0)).

[Case ofk = 1and B,y € Act]

If k = 1andB, y € Act, thenw = ((t1,@)), ot — ti] Py, S = §@, ¢V = o, P is
eithers, or &, and(sy, o) =y ==, (S, o) =5, (2, o).

If sV = 2 = g, thenol” = oft - t, -] and X = {(t, + t,8)|(t',a) €
TR((S’Z, O'[t -t - t]_]))} = {(tz + t’,a)|a € ActA —-[(a ﬂ) A (O'[t - -1+ t’] E

-ty

Pa)lA-[(a=y)A(oft — ta—t1 +1'] E P2OPy)]}. Since(s, o) : =, (2,0) =,
(s2, 0t = t2—11]), (w, X") € TF((s1, 0)) whereX’ = {(t,+ ", d)|(t',a) € TR(S,, o[t —
tb-t]))} = {(tz+t.a)lac Actr=[(a=pB) A (ot > 2 -t + '] E Pg)]l A -(a =
Y) AU =t + V) A (o[t = -ty + 1] E P2) A (o[t — t)] = P4)]]}. Since
(P2®P4)(t) = dt, t4[t = t3 + t4 A Pa(t3) A Pa(ty)] and A, (1" = t] + ) A (oft —
to -ty + ] E P2) A (o[t = t)] | Pg)] if and only ifo[t — to — t; + U] | Iz, 4]t =
t3+taA Pz(tg)/\ P4(t4)] for anyt,, t’ € R*, X' = (t2+t/ a)|a € Acta —-[(a ﬂ)/\(O’[t -
to—t1+t'] E P3)]A-[(a=y)A(o[t = to—ta+t'] F Its, 4t = t3+t4AP2(t3) AP4(ta)])] } =
X. Thus,(w, X) € TF((sl, 0)).
iF s =@ =g, then o = ot » tb-t], ot — t, —t1] F POPs,

(s, ) éw:w (8, 0) S5, (S0t - 12— ti]), and (w,X) € TF((S,. o)) where
X = {(tz + t',a)|(t',a) € TR(S,, ot = t2 —t1]))} = {(tz + ", a)[a € ActA —[(a =

11
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Figure 3: Abstraction for Sequential Structures in Presence of Outtjodogning
Transitions (Before Abstraction)

VA(o[t = to—t1+1'] E P2OP,)]} = {(tz +t,8)]la e ActA=[(a=y) At ty(ta—t1 =
t3+ t4) A (O’[t - tg] E P2) A (O’[t - t4] E P4)]] }. Then, sinc@r[t -1 —tj_] E PoOPy,,
there exists somg € R* such thato[t — t] —t1]  Po, ot — t2 —t]] F Py,

@ -ty -]

(s1,0) éw:w (S2,0) =0 (s2, 0Tt = 1]]) =0 (ss, 0t = t2 - t}]), and(w, X') €
TF((s1,0)) whereX’ = {(tz + ', a)|(t’,a) € TR((Ss, o[t = t2 - t]]))} = {(z + V', Q)la e
ActA =[(a=7y) A(o[t — t2 —t] + U] | P4)]}. By lettingtz = t] — t; andts = t; — t,
X' ={(tz +t',a)la € ActA =[(a = y) A Ttz 4]t = t3 + t4 A Pa(t3) A Pa(ta)])]} = X.
Therefore (w, X) € TF((sy, 0)).

Similarly, we can prove thafw, X) € TF((si,0)) ifk > 2,8 =1, 0ry = 1.
Therefore, T F((s;, o)) € TF((s1, 0)).

SinceT F((s1,0)) € TF((s},0)), TF((s1,0)) = TF((s;,0)) holds. From Defini-
tion 8, (s1,0) =t (S, 0).

More general case is that there are some outgimiogming transitions org;, s,
ands;z, as shown in Fig 3. In this case, all the source states of the incoming transition
of s, must be stable in order to satisfy the congruence property in Theorem 1. In Fig 3,
the outgoing transitions of the stadgandss are observable. If this is satisfied, then all

the incoming transitions o are converted into the nondeterministic choice, as shown

- . . @A xs<t< . - .
in Fig 4. The internal transitios, ! [X—5<><y5] $; is eliminated similarly, but since;

. . - @ @A[Xe<t<ye] B @A[x7<t<y7] .
has some incoming transitiorss — sz and sg — sz, these transi-

Y @A[Xg<t<ysg] &' @A[x9<t<yo]
—_ %

and s — S10

i ... T@A[xs<t<
of the states; are preserved. Then, the time passage of the tl’angﬂ(;n [X_5<><y5]

Y @A[Xs+Xs<t<ys+ys] ¥ @A[Xs+Xg<t<ys+ys]
— —

tions and the original outgoing transitioss

s3 are moved into the transitions S, S, S5,
&' @A Xs5+X9<t<ys+yo] &' @A[Xs5+Xg<t<ys+yo] .
— S10, ands, — S10, Similarly.

Formally, the abstraction rule for sequential structures is defined as follows:

Definition 10 TheAbstraction Rule for Sequential Structurfes PTIA is defined as a

12
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U | v +xstsy,ry) @7+ St< % %l

T@AX +X Sty +
S@Ax, <t<y,] @A+ X Sty +y)

(9

Figure 4: Abstraction for Sequential Structures in Presence of Outtjodogning
Transitions (After Abstraction)

subgraph transformation functiolbsS e(M) on a PTIAM that transforms some sub-
graph Mgy, of the transition graph oM into M ,, whereMs, consists of a set of tran-

. @i @A[Py,] @7?[P,] Bi@?P3;] Yk@?[Pax]
sitionsUjg(s1i —  SU(S — sg)UUjels — S} UUkelSs —
, . @i @A[P1i] @i @7?[Py] Bi@?P3;]

Sl M pconsists ot {si — & s — slUUjals — sty

@7?[P,0OP. @7?[P,0Py ) .
Ukex (S22 ™ E “d S5k S3 n E “d S5k}, eachsy; (i € 1) is a stable statey; € Act,

Bj. vk € Actu {7}, and Py, P2, P3j, P4y € Intvl(Var) foranyiel, je J, ke K.

. . . s@2Q
If there are some other incoming transmosLs ou] s;3 (I € L), then a new state

s, is created and all the incoming and outgoing transitionsf copied into those of
s, before applying this rule. O

If it is not confused, we also consider the abstraction funcinsS ef) as the
mapping from control states ®f to the corresponding statesAbsS e(M).
Then, we have the following theorem:

a@1[P]  7@7[Q]
— 5 —

Theorem 2 For any stable stats, if s S, any pathr beginning withs

contains no loops, and the internal transitispT@ﬂP] s, is observably bounded, then
foranyo, (s, o) =t (AbsS ep), o).

Proof. (sketch) From Theorem 1 and Lemma 1, we can easily prove the general case
by using induction on the number of the branches and using the congruence property

(Theorem 1).

4.2.3 Abstraction for Branching Structures

The abstraction for branching structures is illustrated in Fig. 5. It is clear that any

external observer cannot find which branch is selected if each branch consists of one
transition with the same action name, the same time constraint, and the same desti-
nation state. Thus, we leave just one of these branches. More generally, if there are

13



a@t[x stsy] a@x<t<y,] ”@?tg“yﬂ

OaOActO{7}
Figure 5: Abstraction for Branching Structures

. A Pi
multiple branches; e

a@?[\/iel Pi]
—

] s, (i € 1), then they are abstracted to just one transition

Formally, the abstraction rule for branching structures is defined as follows:

Definition 11 TheAbstraction Rule for Branching Structurfes PTIA is defined as a
subgraph transformation functioAbsBranciiM) on a PTIAM that transforms some

subgraphMgy, of the transition graph oM into M ,, whereMs,, consists of a set of

.y a@7 Pi . a@% iel Pi
transitions| Ji¢ {1 % ] S}, M, consists ofs; @ [—v>' ] s}, @ € ActU {7}, and
P; € Intvl(Var) for anyi € 1. O

Similar toAbsS e), we consider the abstraction functiBbsBranclf) as the map-
ping from a PTIAM to the modified PTIAM’

Since the following theorem is rather straightforward, here we only show the re-
sults.

Theorem 3 For anyse S ando € Val, (s, o) =¢¢ (AbsBrancls), o). O

4.3 Terminating Property of Abstraction Algorithm

Our proposed abstraction algorithm is to apply repeatedly the abstraction rules in Sec-
tion 4.2 until no changes occur. In this section, we show that this abstraction algorithm
is ensured to terminate.

Firstly, we define the abstraction algorithm more precisely.

Definition 12 Abstraction Algorithmis defined as follows:
1. Input PTIAM.
2. Apply Abstraction Rule for Sequential Structure$to
3. Apply Abstraction Rule for Branching StructuresMio
4. Repeat (2)-(3) until no changes occurredvn
5. Output PTIAM. O

Definition 13 Let Abg) be the abstraction function which represents the application
of eitherAbsS e@) or AbsBranclf). O

Then, the following theorem holds.

14



Theorem 4 For any PTIAM, there exists some natural numbesuch thatAbs'(M)
contains no internal transitions. Her&bs'(M) means the PTIA to which the abstrac-
tion rules are applied times.

Proof. (sketch) From Definition 13, it can be proven that the functdry) generally
monotonically decreases the number of internal transitions. Moreover, it can be shown
that any internal transitions can be eliminated by the proposed abstraction rules if
their directly preceding transitions are observable and they are observably bounded.
Furthermore, since the transition graph is a DAG and the initial state is stable, we can
repeatedly apply the abstraction rules from the top to the bottom of the DAG. From the
fact above, we can prove the theorem.

From this theorem, the following corollary immediately holds.

Corollary 1 The abstraction algorithm in Definition 12 eventually terminates for any
input M. O

5 Equivalence Checking

In this section, we show that parametric timed failure equivalence checking on PTIA
is reduced to parametric timed strong bisimulation checking on PTIA without internal
transitions.

By applying the algorithm of Definition 12 to two PTIAg; and M,, we obtain
two PTIAsAbqM;) andAbg M), which have no internal transitions and timed failure
equivalent toM; and M, respectively. On the other hand, from the result of Ref.[14],
we can obtain the parameter condition in order the§M;) and AbgM,) are timed
strong bisimulation equivalent. Since timed strong bisimulation equivalence implies
timed failure bisimulation equivalence, and timed failure equivalence satisfies the tran-
sitive law, the obtained parameter condition is also the parameter condition in order
thatM; andM,, are timed failure equivalent.

Definition 14 A binary relationR on states of a timed LTS istined strong bisimula-
tion if the following condition hold:
If (s1,01)R(S2, 072), then for anyr € Actu R* U {1},

1. V&, (sn01) — (S, 0)) =
38, 0% [ (S2.02) = (S5, 0%) A (S, )R(S5. 05) 11,
and,
2. V 8,0 (S2,02) — (S, 0%) =
3s;, 0 [ (s1.01) = (31,09) A (S, )R(S, o) 1]
We say that stategs;, o1) and (s, o2) are timed strong bisimulation equivalent

denoted by{si, 071) =tsp (S2, 072) if and only if there exists a timed strong bisimulation
Rsuch that(s;, o1) R (s, 02).

The following relationship holds among timed strong bisimulation equivalence,
timed weak bisimulation equivalence, and timed failure equivalence

Proposition 2 For any two concrete statgs;, o1) and(s, o) of atimed LTS(sy, 071) =tsp
(s1, 1) implies (s1, 1) =wb (S1,01), and(s1,01) =tsp (S1,01) iImplies (s, o1) =t
(s1,01). O
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From the discussions above, the following theorem holds.

Theorem 5 For any PTIAsSM; and My, if there exists some natural numberandm
such thatAb<(M;) and Abg"(M;) contain no internal transitions, andbg(M;) =g
Abg"(My) if and only if M1 = Ma. O

6 Conclusion

In this paper, we proposed a parametric time-interval automaton(PTIA) and its trans-
formation algorithm to eliminate internal actions while preserving timed failure equiv-
alence, and showed that parametric timed failure equivalence checking on PTIAs can
be reduced to the existing parametric timed strong bisimulation equivalence checking
method without internal transitions.

The future work is to relax some of the restrictions imposed on target PTIAs, es-
pecially for the loops. For preserving timed failure equivalence, we confirmed that
abstraction is still possible by the proposed abstraction rules in some cases containing
loops, but there are some weird examples the proposed abstraction rules cannot be ap-
plied. On the other hand, for preserving timed trace equivalence, we are successfully
developed the abstraction algorithm for unrestricted PTIAs. We are currently working
on PTIAs containing various loop structures and developing more general abstraction
algorithms for preserving timed failure equivalence/antimed trace equivalence.
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