
A Timed Failure Equivalence Preserving
Abstraction for Parametric Time-Interval

Automata

Akio Nakata, Tadaaki Tanimoto, Suguru Sasaki, Teruo Higashino

Department of Information Networking,
Graduate School of Information Science and Technology,

Osaka University, Suita, Osaka 565-0871, Japan

Abstract

In the development of real-time communicating hardware/embedded-software
systems, it is frequently the case that we want to refine/optimize the system’s in-
ternal behavior while preserving the external timed I/O behavior. In such a design
refinement, modification of the systems’ internal branching structures, as well as
re-scheduling of internal actions, may frequently occur. Our goal is, then, to en-
sure that such modification of internal branching structures and re-scheduling of
internal actions preserve the systems’ external timed behavior, which is typically
formalized by the notion of (timed) failure equivalence since it is less sensitive to
the difference of internal branching structures than (timed) weak bisimulation. In
order to know the degree of freedom of such re-scheduling, parametric analysis
is useful. One of the models suitable for such an analysis is a parametric time-
interval automaton(PTIA), which is a subclass of the existing model, a parametric
timed automaton. It has only a time interval with upper- and lower-bound param-
eters as a relative timing constraint between consecutive actions. In this paper, at
first, we propose an abstraction algorithm of PTIA which preserves timed failure
equivalence. Timed failure equivalence is strictly weaker than timed weak bisim-
ulation in the sense that it does not distinguish the difference of the timing when
the internal resolution of nondeterminism has occurred, but it does distinguish the
difference of the refusals of communicating actions observed by an external en-
vironment. Then, we also show that after applying our algorithm, the reduced
PTIA has no internal actions, and thus the problem deriving a parameter condition
in order that given two models are timed failure equivalent can be reduced to the
existing parametric strong bisimulation equivalence checking.
Keywords: real-time communicating systems, parametric timed automata, equiv-
alence checking, timed failure equivalence, abstraction

1 Introduction

In recent years, an effective development methodology for embedded-hardware/software
with real-time constraints is desired. Precise implementation of timing constraints for
I/O behavior is becoming important not only in embedded systems like mobile phones
but also in infrastructure systems for transportation, medicine, finance and defense.
For such real-time systems, it is important to verify the equivalence of I/O timing

1

behavior between the initially designed specification and its refined implementation.
In such a refinement process of the system development, it is frequently occur that
the formally specified nondeterministic branches in the specification are refined to de-
terministic ones. Such an implementation may be done by using if-then-else and/or
switch-case statements of some imperative programming language such as C, Java,
etc. (for softwares), or VHDL, Verilog, etc. (for hardwares), and so on. However,
in such an implementation the initially specified branching structure may be modified
when it is viewed as a real-time communicating behavior, which is generally important
for embedded systems containing I/O actions. For example, a nondeterminisic branch
of some I/O actionsa,b andc (these actions can be considered to any I/O actions such
as read/write to I/O ports of some devices, and so on) in the initial specification may
be implemented to the if-then-else statements such as “if (condition1) thena else if
(condition2) thenb elsec”. In this case, when we view the real-time communicat-
ing behavior of the implementation, the decision whether the actiona is executed or
not is already made after the time that the condition1 is evaluated. In the verification
of equivalence between the specification and the refined implementation, we want to
consider these behaviors as equivalent.

Some theoretical works on equivalence for real-time communicating systems while
considering unobservable internal actions are proposed so far. Timed weak bisimu-
lation equivalence was proposed to determine equivalence of processes considering
both time and observability[9], but as pointed out in [4], timed weak bisimulation may
not be suitable for equivalence checking of real-time systems when branching struc-
tures of a specification are modified in the implementation. Global timed bisimulation
equivalence[4] is weaker than timed weak bisimulation equivalence and is less sensitive
to the modification of branching structures. Unfortunately, global timed bisimulation
equivalence is still too strong compared to timed failure equivalence[16, 3, 15]. Timed
failure equivalence is considered to be a sufficient criterion of correct refinement of
practical communicating systems in the sense that if two (finite state) systemsP and
Q are timed failure equivalent, then for any (finite state) external environmentR, the
composed communicating system ofP andR behaves equivalently to that ofQ andR.
Therefore, we adopt timed failure equivalence1 as the refinement relation between a
specification and its refined implementation.

Moreover, it would be useful if we put real-time constraints containing parameters
(e.g. upper-/lower-bounds), and derive automatically the constraint (e.g. the minimum
or maximum value allowed) of parameters in which the equivalence is preserved. Such
an analysis is called a parametric analysis[2, 17]. Parametric analysis is especially use-
ful when the equivalence of the system strongly depends on the timings on its actions
and we need to tune the timings to preserve the equivalence. Otherwise we need to
do such a tuning in a try-and-error manner, that is, we fix all the timing parameters to
some set of values, check the equivalence, and if it is failed, try again for another set of
values, and so on. This is generally tedious.

To make such equivalence checking feasible, we abstract away the data dependent
part of such an implementation and focus on the control part only. To capture the
control flow of such system’s specification and implementation with time constraints
and perform a parametric analysis, we propose a parametric time-interval automaton
(PTIA), which is a subset of a parametric timed automaton[2] having only a time in-
terval with upper- and lower-bound parameters as a relative timing constraint between

1There are several variants of timed failure equivalence, some of those consider timed/untimed-stability,
finite/infinite time refusals, nonzeno-condition, and so on[3, 15]. In this paper, we disregard those differences
and adopt the simplest definition of timed failure equivalence.

2

consecutive actions. We show that timed failure equivalence checking for PTIAs can
be reduced to existing parametric strong timed bisimulation equivalence checking.

There are some proposals of parametric equivalence checking for communicating
systems. For bisimulation equivalence without time, parametric strong/weak bisimula-
tion equivalence checking algorithms on STG (Symbolic Transition Graph) and STGA
(STG with Assignment) are already proposed[6, 11, 10]. For timed strong bisimulation
equivalence (bisimulation equivalence where both time and all actions are considered
observable), parametric equivalence checking is proposed in [14]. However, as far as
we know, parametric equivalence checking algorithm has not been proposed for any
other time related equivalence, even for timed weak bisimulation equivalence (bisim-
ulation equivalence where time is considered observable and internal actions are not
considered observable).

In this paper, we propose a method to abstract away the difference of branching
structures of internal actions from a given real-time communicating system model writ-
ten in a PTIA, while preserving timed failure equivalence. Specifically, the proposed
method convert a given PTIA that may contain some internal actions into the PTIA
which does not contain any internal actions and is timed failure equivalent to the given
PTIA. Here, in this paper we assume that the given PTIA does not contain any loops
(i.e. its transition graph is a DAG(Directed Acyclic Graph)), its initial action must
be an observable action, and every internal action isobservably bounded, that is, it
must appear between some observable actions in any action execution sequences. By
combining the proposed abstraction method and the parametric timed strong bisimula-
tion equivalence checking method proposed in [14], we can perform parametric timed
failure equivalence checking.

The rest of this paper is organized as follows. In Section 2, we define the PTIA
model and its operational semantics by defining a mapping from the model to a timed
extension of labelled transition system (timed LTS). Section 3 describes the defini-
tion of timed equivalences on the timed LTS, including timed failure equivalence. We
propose a transformation algorithm on the PTIA and prove that the transformation pre-
serves timed failure equivalence in Section 4. In Section 5, we propose a parametric
timed failure equivalence checking algorithm. Conclusions and future directions are
given in Section 6.

2 Parametric Time-Interval Automata

Let Act andVar denote a set of actions and a set of variables, respectively. We denote
the set of all real-numbers byR and the set of all non-negative real-numbers byR+.
Let N0 [N] be the set of all natural numbers including 0 [excluding 0, respectively]. Let
Intvl(Var) denote a set of formulas of the form eithere1 ≤ t, t ≤ e2, ore1 ≤ t ∧ t ≤ e2,
wheree1 ande2 are linear arithmetic expression (that is, only addition and subtraction
are allowed) over variables inVar \ {t} and constants inR, andt ∈ Var is the special
variable representing the elapsed time since the latest visit of the current control state.

Definition 1 Aparametric time-interval automatonis a tuple〈S, {t},PVar,E, sinit〉, where
S is a finite set ofcontrol states(also referred to aslocations), t ∈ Var is theclock vari-
able, PVar ⊆ Var is a finite set ofparameters, E ⊆ S × (Act∪ {τ}) × Intvl(Var) × S is
a transition relation,sinit is the initial state. Note thatτ represents aninternal action.
On the other hand, every other action inAct represents anobservable action. We write

si
a@?t[P]−→ sj if (si ,a,P, sj) ∈ E. 2

3

Informally, a transitionsi
a@?t[P]−→ sj means that the actiona can be executed from

si when the values of both the clock variablet and parameters satisfy the formulaP
(called aguard condition), and after executed, the state moves intosj and the clock
variablet is reset to zero. In any states, the value of the clock variablet increases
continuously, representing the time passage.

Formal semantics of parametric time-interval automata is similar to that of the para-
metric timed automata, which is defined as follows. The values of clocks and param-
eters are given by a functionσ : ({t} ∪ PVar) 7→ R. We refer to such a function as a
value-assignment. We represent a set of all value-assignments byVal. We writeσ |= P
if a formula P ∈ Intvl(Var) is true under a value-assignmentσ ∈ Val. The semantic
behavior of a parametric timed automaton is given as a semantic transition system on
concrete states. A concrete state is represented by (s, σ), wheres is a control state and
σ is a value-assignment. LetCS def

= {(s, σ)|s ∈ S, σ ∈ Val} be a set of concrete states.
The semantic model is atimed labelled transition system (timed LTS), which is defined
as follows. A state of a timed LTS is a concrete state inCS. A transition of a timed LTS
is either adelay-transitionor anaction-transition. A delay transition represents a time
passage within the same control states ∈ S, whereas an action transition represents an
execution of an action which changes the control state to the next ones′. Formally, a
timed labelled transition system is defined as follows.

Definition 2 A timed labelled transition system(a timed LTSfor short) for a paramet-
ric time-interval automaton is a labelled transition system〈CS, Act∪ R+ ∪ {τ}, CE,
(sinit , σinit [t → 0])〉, where a set of states isCS, a set of labels isAct∪R+∪{τ}, an initial
state is(sinit , σinit [t → 0]), and a transition relationCE ⊆ CS× (Act∪R+ ∪ {τ}) ×CS
is defined as the minimum set that satisfies the following conditions (in the following,

we write(s, σ)
l−→ (s′, σ′) if ((s, σ), l, (s′, σ′)) ∈ CE):

• (s, σ)
v−→ (s, σ + v) if v ∈ R+,

• (s, σ)
a−→ (s′, σ[t → 0]) if a ∈ Act∪ {τ}, s

a@?t[P]−→ s′, andσ |= P,

whereσ + v andσ[t → 0] are the value-assignments derived fromσ, which is defined
as follows:

For x ∈ PVar∪ {t}
(σ + v)(x) def

=

{
σ(x) + v if x ∈ {t},
σ(x) otherwise.

(σ[t → 0])(x) def
=

{
0 if x ∈ {t},
σ(x) otherwise.

2

3 Timed Equivalences

In this section, we briefly recall the definition of timed failure equivalence[16, 3, 15],
as well as the definition of the traditional timed weak bisimulation equivalence[1, 9]
and its relation to timed failure equivalence.

4

3.1 Timed Weak Bisimulation Equivalence

In this section, we will briefly give the definition of timed weak bisimulation equiva-
lence.

Definition 3 For any α ∈ Act ∪ {τ} ∪ R+, a timed weak transition relation
α

=⇒w is
a binary relation on states of a timed LTS〈CS,Act∪ R+ ∪ {τ},CE, (s0, σ0)〉, that is
defined as follows:

1.
τ

=⇒w
def
= (

0−→ ∪ τ−→)∗

2. (s, σ)
v

=⇒w (s′, σ′) (v ∈ R+)
def
= ∃v1, v2, ..., vn ∈ R+ [v =

∑n
i=1 vi

∧∃s1, σ1, σ
′
1, s2, σ2, σ

′
2, ..., sn, σn, σ

′
n

s.t. (s, σ)
τ

=⇒w (s1, σ1)
v1−→ (s1, σ

′
1) · · · τ

=⇒w (sn, σn)
vn−→

(sn, σ
′
n)

τ
=⇒w (s′, σ′)]

3.
a

=⇒w (a ∈ Act) def
=

τ
=⇒w

a−→ τ
=⇒w 2

By using this transition relation, timed weak bisimulation is defined as follows:

Definition 4 A binary relationRon states of a timed LTS is atimed weak bisimulation
if the following condition hold:

If (s1, σ1)R(s2, σ2), then for anyα ∈ Act∪ R+ ∪ {τ},

1. ∀ s′1, σ
′
1[(s1, σ1)

α
=⇒w (s′1, σ

′
1) ⇒

∃s′2, σ
′
2 [(s2, σ2)

α
=⇒w (s′2, σ

′
2) ∧ (s′1, σ

′
1)R(s′2, σ

′
2)]] ,

and,

2. ∀ s′2, σ
′
2[(s2, σ2)

α
=⇒w (s′2, σ

′
2) ⇒

∃s′1, σ
′
1 [(s1, σ1)

α
=⇒w (s1, σ

′
1) ∧ (s′1, σ

′
1)R(s′2, σ

′
2)]]

We say that states(s1, σ1) and (s2, σ2) are timed weak bisimulation equivalent,
denoted by(s1, σ1) ≡twb (s2, σ2) if and only if there exists a timed weak bisimulationR
such that(s1, σ1) R (s2, σ2). 2

3.2 Timed Failure Equivalence

Timed failure equivalence is a kind of equivalence between two (possibly nondetermin-
istic) communicating processes such that their possibilities of communication failures
are equivalent. Similar to many process algebras such as CCS[13], CSP[8], etc., we
abstract every communication to the synchronization (rendezvous) of actions with the
same action label (name) performed by multiple concurrent processes. That is, a com-
munication happens between two processesP andQ if they perform the same action
simultanously. We say that an actiona in a processP is offeredfor communication if
some other process in the external environment ofP is ready to performa and expect
thatP also performsa. An offered actiona is calledrefusedby P if P cannot perform
a when offered. A communication failure occurs if the external environment has ob-
served some sequence of actions performed byP and it offers some expected actiona
but P refuses it. This kind of communication failure possibility can be formally de-
scribed by the pair (trace,refusal), where atrace is an observed sequence of performed

5

actions byP by now and arefusalis a set of actions that may be refused byP aftertrace
has been observed.Failure equivalence(or testing equivalence[5], an operational se-
mantic view of the failure equivalence by the notion of test), is an equivalence between
(untimed) communicating processes that such possiblities of communication failures
are equivalent. Since we consider nondeterminism, it is possible that traces are the
same and refusals are different. Hence, failure equivalence is generally finer thantrace
equivalence, that is, the language equivalence in the traditional automata theory where
any states are considered the accepting states. For timed communicating processes, we
have to extend the notion of failure to the corresponding timed one. Several such ex-
tensions have been proposed in [7, 16, 3, 15, 12]. In this paper, we adopt the definition
that is slightly modified from that of [16] for simplicity. Intuitively, atimed failureis a
pair (timed trace, timed refusal), where atimed traceis an observed sequence of tuples
of a performed action and its observed absolute time (the elapsed time from when the
system has started), and atimed refusalis a set of tuples of a set of refused actions and
the absolute time it is refused. The formal definition is as follows.

Definition 5 (Timed Failures) Let T A def
= {(t,a)|t ∈ R+,a ∈ Act} denote the set of all

timed actions. LetTT def
= {〈(t1,a1) · · · (tk,ak)〉|k ∈ N0∀i ∈ {1, . . . , k}, (ti ,ai) ∈ T A,∀i, j ∈

{1, . . . , k}, (i ≤ j) ⇒ (ti ≤ t j)} denote the set of all(finite) timed traces. Let TR def
=

{R|R⊆ R+ × Act} denote the set of alltimed refusals. Then, the set of alltimed failures
is denoted byT F def

= {(w,X)|w ∈ TT,X ∈ TR}. 2

Definition 6 (Notations for Timed Traces and Timed Refusals)For w ∈ TT, we de-
note the length ofw as |w|, that is,|w| def

= k if w = 〈(t1,a1) · · · (tk,ak)〉. For X ∈ TRand
t ∈ R+, X + t def

= {(t′ + t,a)|(t′,a) ∈ X}. 2

Definition 7 (Timed Failures of Concrete States of Timed LTSs)For any state(s, σ) ∈
CS of a Timed LTS〈CS, Act∪R+∪{τ},CE, (sinit , σinit [t → 0])〉, TT((s, σ)) def

= {〈(t1,a1)

· · · (tk,ak)〉 | ∃s1, . . . , sk, s′1, . . . , s
′
k ∈ S ∃σ1, . . . , σk, σ

′
1, . . . , σ

′
k ∈ Val (s, σ)

t1
=⇒w

(s1, σ1)
a1

=⇒w (s′1, σ
′
1) · · · (s′k−1, σ

′
k−1)

tk−tk−1
=⇒ w (sk, σk)

ak
=⇒ (s′k, σ

′
k)}, TR((s, σ)) def

=

{(t,a)|t ∈ R+,a ∈ Act,¬[∃s′, s′′ ∈ S, ∃σ′, σ′′ ∈ Val s.t. (s, σ)
t

=⇒w (s′, σ′)
a

=⇒w

(s′′, σ′′)]}, andT F((s, σ)) def
= {(〈(t1,a1) · · · (tk,ak)〉,X) | ∃tk+1 ∈ R+ ∃s1, . . . , sk+1, s′1, . . . , s

′
k ∈

S ∃σ1, . . . , σk+1, σ
′
1, . . . , σ

′
k ∈ Val (s, σ)

t1
=⇒w (s1, σ1)

a1
=⇒w (s′1, σ

′
1) · · · (s′k−1, σ

′
k−1)

tk−tk−1
=⇒ w

(sk, σk)
ak

=⇒w (s′k, σ
′
k)

tk+1−tk
=⇒ w (sk+1, σk+1) ∧X = TR((sk+1, σk+1)) + tk+1}}. 2

Definition 8 (Timed Failure Equivalence) We say that concrete states(s1, σ1) and
(s2, σ2) are timed failure equivalent, denoted by(s1, σ1) ≡t f (s2, σ2) if and only if
T F((s1, σ1)) = T F((s2, σ2)). 2

As for the relationship between timed weak bisimulation and timed failure equiva-
lence, the following proposition holds.

Proposition 1 For any two states(s1, σ1) and (s2, σ2) of a timed LTS, if(s1, σ1) ≡twb

(s2, σ2), then(s1, σ1) ≡t f (s2, σ2). 2

4 Abstraction Algorithm

In this section, we propose some abstraction rules to eliminate internal actions of the
PTIA, and show that their rules preserve timed failure equivalence.

6

In the following, first, we describe some restrictions on PTIAs which ensure the
correctness of the proposed abstraction rules. Then, we describe the key idea and the
details of the proposed abstraction rules. Finally, we show that the abstraction rules
preserve timed failure equivalence.

4.1 Restrictions for Parametric Time-Interval Automata

In order to apply our proposed abstraction rules, we impose the following restrictions
[RLoopFree], [RInitStability], and [RObsBounded] for an input PTIAM.

[RLoopFree] M contains no loops, that is, the transition graph ofM is a DAG.

[RInitStability] The initial statesinit of M must be either astablestate, or reachable
to a stable state by deterministic internal transitions (i.e. there are no branches
along a path from the initial state to a stable state). Here, astablestate is a state
whose every outgoing transition is observable.

[RObsBounded] Any internal transition contained inM is observably bounded, that
is, for any execution pathπ of M, there exists an extensionπ′ of the pathπ in
that any internal transition is appeared between some observable transitions.

Formally, an internal transitions
τ@t[P]−→ s′ contained inM is observably bounded

if for any transition sequencesinit
α1@?t[P1]−→ s1 · · · sk−1

αk@?t[Pk]−→ s
τ@t[P]−→ s′ (k ∈ N0,

α1, . . . , αk ∈ Act∪ {τ}, P1, . . . ,Pk,P ∈ Intvl(Var)) of M, there exists somei ∈
{1, . . . , k} such thatαi ∈ Act, and for any transition sequences

τ@?t[P]−→ s′
β1@?t[Q1]−→

s1 · · · sm−1
βm@?t[Qk]−→ sm (m ∈ N0, β1, . . . , βm ∈ Act∪{τ}, Q1, . . . ,Qm ∈ Intvl(Var)),

there exists an extension of the sequencesm
βm+1@?t[Qm+1]−→ sm+1 · · · sm+l−1

βm+l@?t[Qm+l]−→
sm+l (l ∈ N0, βm+1, . . . , βm+l ∈ Act∪ {τ}, Qm+1, . . . ,Qm+l ∈ Intvl(Var)) and there
exists somej ∈ {1, . . . ,m+ l} such thatβ j ∈ Act.

4.2 Abstraction Rules for Parametric Time-Interval Automata

For any internal transition that directly follows some observable transition, we can
eliminate the internal transition based on the following principles:

1. The internal nondeterminism caused by the internal transition can be converted
into the corresponding nondetermistic choice of the directly preceding observ-
able transition, just the same as the classical equational theory of testing equivalence[5].

2. On the contrary, the time passage caused by the internal transition can be moved
into those of the directly succeeding transitions which are either internal or ob-
servable.

This is the key idea for preserving timed failure equivalence. Since any internal action
is observably bounded, by the restriction [RObsBounded], the sequence of internal
actions can be completely eliminated from the beginning internal action (which directly
follows some observable action) to the ending one (which is directly followed by some
observable action).

However, if we want to transform some subgraph of the entire transition graph
of M, we must ensure that such a subgraph transformation preserves equivalence of
the entire transition graph. To make the discussion simple, we impose the restriction

7

tf≡

⇒
tf≡1̂s 2ŝ

1s 2s

3s
3s

@? []t Pα

Act∈∀α

subM subM ′

subM subM ′

M ′ M ′

has no incoming transitions in 1s subM

2s subM ′has no incoming transitions in

()P Intvl Var∀ ∈

@? []t Pα

Figure 1: Congruence Property w.r.t. Timed Failure Equivalence

[RLoopFree]. By this restriction, we focus on the case that the transition graph is a
DAG. Furthermore, we prove that if the context of the subgraph under transformation
is in some form, such subgraph transformation preserves equivalence of the entire tran-
sition systemM. To ensure that all internal transition can be eliminated by such a
context-sensitive transformation, we need the restriction [RInitStability].

The proposed abstraction rules are the followings:

1. abstraction for sequential structures

2. abstraction for branching structures

The details are described in the following sections.

4.2.1 Context Sensitivity of Abstraction Rules

Consider that some subgraphMsub of the entire transition graph of PTIAM is replaced
into some equivalent subgraphM′sub. Such a transformation does not always preserve
equivalence of the entire transition graph. We will show that ifMsub appears in the
context shown in Fig 1, then the subgraph transformation fromMsub to M′sub preserves
timed failure equivlaence

Theorem 1 (Congruence Property w.r.t. Timed Failure Equivalence)Let M = 〈S,
{t}, PVar, E, sinit〉 be a PTIA, ands1, s2 ∈ S which have no incoming transitions
from some states that is reachable froms1 and s2 in M. Let ŝ1 and ŝ2 be new states

obtained by adding the same observable branch tos1 and s2, that is, ŝ1
α@?t[P]−→ s3 and

ŝ2
α@?t[P]−→ s3 for α ∈ Act, s3 ∈ S, P ∈ Intvl(Var), ŝ1

β@?t[Q1]−→ s′1 if s1
β@?t[Q1]−→ s′1 for

β ∈ Act∪ {τ}, Q1 ∈ Intvl(Var), and ŝ2
β@?t[Q2]−→ s′2 if s2

β@?t[Q2]−→ s′2 for β ∈ Act∪ {τ},
Q2 ∈ Intvl(Var).

Then, for anyσ ∈ Val, (ŝ1, σ) ≡t f (ŝ2, σ) if (s1, σ) ≡t f (s2, σ).
Proof. We will only prove thatT F((ŝ1, σ)) ⊆ T F((ŝ2, σ)), since the converse is
similar by symmetry and hence the theorem will be proved. Choose arbitrary timed
failure (w,X) ∈ T F((ŝ1, σ)). We will show that(w,X) ∈ T F((ŝ2, σ)). w ∈ TT((ŝ1, σ))
can be expressed asw = 〈(t1,a1) · · · (tk,ak)〉 for somek ∈ N0, t1, . . . , tk ∈ R+, and

a1, . . . , ak ∈ Act. From Definition 7,(ŝ1, σ)
t1

=⇒w

a1
=⇒w (s(1)

1 , σ(1)
1)

t2−t1
=⇒w

a2
=⇒w · · ·

tk−tk−1
=⇒ w

ak
=⇒w (s(k)

1 , σ(k)
1)

tk+1−tk
=⇒ w (s(k+1)

1 , σ(k+1)
1) for sometk+1 ∈ R+, s(1)

1 , . . . , s(k+1)
1 ∈ S, and

8

σ(1)
1 , . . . , σ(k+1)

1 ∈ Val. From the definition ofŝ1, either (0)k = 0, that is,w = 〈〉
(the empty trace) and(〈〉,X) ∈ T F((ŝ1, σ)), (1) (s1, σ)

t1
=⇒w

a1
=⇒w (s(1)

1 , σ(1)
1), or (2)

(ŝ1, σ)
t1

=⇒w

a1
=⇒w (s3, σ

(1)
1) holds.

For the case (0),(ŝ1, σ)
t1

=⇒w (s(1)
1 , σ(1)

1) and X = TR((s(1)
1 , σ(1)

1)) + t1 hold. If

s(1)
1 = s3, then obviously(〈〉,X) ∈ T F((ŝ2, σ)) holds because(ŝ2, σ)

t1
=⇒w (s3, σ

(1)
1)

andTR((s(1)
1 , σ(1)

1)) = TR((s3, σ
(1)
1)). Otherwise, from the definition of̂s1, (s1, σ)

t1
=⇒w

(s(1)
1 , σ(1)

1) holds. Then, since(s1, σ) ≡t f (s2, σ), (〈〉,X) ∈ T F((s2, σ)) holds and

thus there exists somes(1)
2 ∈ S and σ(1)

2 ∈ Val such that(s2, σ)
t1

=⇒w (s(1)
2 , σ(1)

2)

and TR((s(1)
2 , σ(1)

2)) = TR((s(1)
1 , σ(1)

1)). Then, from the definition of̂s2, (ŝ2, σ)
t1

=⇒w

(s(1)
2 , σ(1)

2). Therefore,(〈〉,X) ∈ T F((ŝ2, σ)).
For the case (1), we can assume thats(i)

1 , ŝ1 for any i ∈ {1, . . . , k + 1}, because
otherwise, from the assumption that there no incoming transitions from some state
s that is reachable froms1, k = 0 must hold and the proof is reduced to the case
(0). Then(s(k+1)

1 , σ(k+1)
1) is reachable from(s1, σ). Thus,w ∈ TT((s1, σ)) and X =

TR((s(k+1)
1 , σ(k+1)

1)) + tk+1. Hence,(w,X) ∈ T F((s1, σ)). From the assumption that
(s1, σ) ≡t f (s2, σ) and Definition 8,(w,X) ∈ T F((s2, σ)). Thus, from Definition 7,

there exists somes(1)
2 , . . . , s(k+1)

2 , σ(1)
2 , . . . , σ(k+1)

2 such that(s2, σ)
t1

=⇒w

a1
=⇒w (s(1)

2 , σ(1)
2)

· · · tk−tk−1
=⇒ w

ak
=⇒w (s(k)

2 , σ(k)
2)

tk+1−tk
=⇒ w (s(k+1)

2 , σ(k+1)
2) and TR((s(k+1)

2 , σ(k+1)
2)) = TR((s(k+1)

1 ,

σ(k+1)
1)). Then, from the definition of̂s2, (ŝ2, σ)

t1
=⇒w

a1
=⇒w (s(1)

2 , σ(1)
2) · · · tk−tk−1

=⇒ w

ak
=⇒w

(s(k)
2 , σ(k)

2)
tk+1−tk
=⇒ w (s(k+1)

2 , σ(k+1)
2) also holds. Hence,(w,X) ∈ T F((ŝ2, σ)).

Similarly, (w,X) ∈ T F((ŝ2, σ)) can be proved for the case (2).
Hence,T F((ŝ1, σ)) ⊆ T F((ŝ2, σ)). By symmetry,T F((ŝ2, σ)) ⊆ T F((ŝ1, σ)) also

holds. Therefore,(ŝ1, σ) ≡t f (ŝ2, σ).

4.2.2 Abstraction for Sequential Structures

The abstraction for sequential structures is illustrated in Fig. 2. In the left half of

Fig 2, the transitions2
τ@?t[x2≤t≤y2]−→ s3 is internal and its directly preceding transition

s1
α@?t[x1≤t≤y1]−→ s2 is observable. Its siblings2

β@?t[x3≤t≤y3]−→ s4 and its directly succeed-

ing transitions3
γ@?t[x4≤t≤y4]−→ s5 may be either internal or observable. In this case,

we eliminate the internal transitions2
τ@?t[x2≤t≤y2]−→ s3 as the right half of Fig 2. In

this abstraction, the nondetermistic behavior of the eliminated internal transition is
converted into the nondeterministic choice of the directly preceding observable tran-

sitions s1
α@?t[x1≤t≤y1]−→ s2 and s1

α@?t[x1≤t≤y1]−→ s3. On the other hand, the time passage
of the eliminated internal transition is merged into the directly succeeding transitions

s2
γ@?t[x2+x4≤t≤y2+y4]−→ s5 ands3

γ@?t[x2+x4≤t≤y2+y4]−→ s5.
Formally, the operation for merging two time intervals is defined as follows:

Definition 9 Θ is a binary operator onIntvl(Var) such that for anyP,Q ∈ Intvl(Var),
(PΘQ)(t) def

= ∃t1, t2[P(t1) ∧ Q(t2) ∧ t = t1 + t2]. 2

Then, the following lemma holds:

9

s1

s2

s3

s4

s5

][@? 11 ytxt ≤≤α

][@? 22 ytxt ≤≤τ

][@? 33 ytxt ≤≤β

][@? 44 ytxt ≤≤γ

Abs

s1

s2 s3

s4

s5

][@? 11 ytxt ≤≤α

][@? 33 ytxt ≤≤β

][@? 4242 yytxxt +≤≤+γ

][@? 11 ytxt ≤≤α

][@? 4242 yytxxt +≤≤+γ

Act∈∀α
}{, τγβ ∪∈∀ Act

Figure 2: Abstraction for Sequential Structures

Lemma 1 Let α ∈ Act and β, γ ∈ Act ∪ {τ}. Let M and M′ be PTIAs whose sets

of transtions are{ s1
α@?t[P1]−→ s2, s2

τ@?t[P2]−→ s3, s2
β@?t[P3]−→ s4, s3

γ@?t[P4]−→ s5 } and

{ s′1
α@?t[P1]−→ s′2, s′1

α@?t[P1]−→ s′3, s′2
β@?t[P3]−→ s4, s′2

γ@?t[P2ΘP4]−→ s5, s′3
γ@?t[P2ΘP4]−→ s5 },

respectively. Then, for any assignmentσ ∈ Val, (s1, σ) ≡t f (s′1, σ).
Proof. Choose arbitrary timed failure(w,X) ∈ T F((s1, σ)). We will show that(w,X) ∈
T F(s′1, σ). w ∈ TT((s1, σ)) can be expressed asw = 〈(t1,a1) · · · (tk,ak)〉 for some

k ∈ N0, t1, . . . , tk ∈ R+, anda1, . . . , ak ∈ Act. From Definition 7,(s1, σ)
t1

=⇒w

a1
=⇒w

(s(1)
1 , σ(1)

1)
t2−t1
=⇒w

a2
=⇒w · · ·

tk−tk−1
=⇒ w

ak
=⇒w (s(k)

1 , σ(k)
1)

tk+1−tk
=⇒ w (s(k+1)

1 , σ(k+1)
1) for sometk+1 ∈ R+,

s(1)
1 , . . . , s(k+1)

1 ∈ S andσ(1)
1 , . . . , σ(k+1)

1 ∈ Val andX = TR((s(k+1)
1 , σ(k+1)

1)) + tk+1. From
the definition ofM, a1 = α if k ≥ 1 anda2 may beβ [γ] if k ≥ 2 andβ [γ, resp.] is
observable (i.e.,β ∈ Act [γ ∈ Act, resp.]).
[Case ofk = 0]
If k = 0, thenw = 〈〉 andX = TR((s(1)

1 , σ(1)
1)) + t1. From the definition ofM, s(1)

1 = s1,

σ(1)
1 = σ[t → t1], andTR((s1, σ1[t → t1])) = {(t′,a)|a ∈ Act∧ ¬[(a = α) ∧ (σ[t →

t1 + t′] |= P1)]}. ThusX = TR((s1, σ1[t → t1])) + t1 = {(t1 + t′,a)|a ∈ Act∧ ¬[(a =

α)∧(σ[t → t1+t′] |= P1)]}. Then, from the definition ofM′, (s′1, σ)
t1

=⇒w (s′1, σ[t → t1])
and (w,X′) ∈ T F((s′1, σ) whereX′ = TR((s′1, σ[t → t1])) + t1 = {(t1 + t′,a)|a ∈
Act∧ ¬[(a = α) ∧ (σ[t → t1 + t′] |= P1)]} = X. Therefore,(w,X) ∈ T F((s′1, σ)).
[Case ofk = 1 and β, γ ∈ Act]
If k = 1 andβ, γ ∈ Act, thenw = 〈(t1, α)〉, σ[t → t1] |= P1, s(1)

1 = s2, σ(1)
1 = σ, s(2)

1 is

eithers2 or s3, and(s1, σ)
t1

=⇒w

α
=⇒w (s2, σ)

t2−t1
=⇒w (s(1)

2 , σ(1)
2).

If s(2)
1 = s2, thenσ(1)

2 = σ[t → t2 − t1] and X = TR((s2, σ[t → t2 − t1])) + t2 =

{(t2 + t′,a)|a ∈ Act∧ ¬[(a = β) ∧ (σ[t → t2 − t1 + t′] |= P3)] ∧ ¬[(a = γ) ∧ ∃t′1, t′2[(t′ =

t′1 + t′2) ∧ (σ[t → t2 − t1 + t′1] |= P2) ∧ (σ[t → t′2] |= P4)]] }. Since(s′1, σ)
t1

=⇒w

α
=⇒w

(s′2, σ)
t2−t1
=⇒w (s′2, σ[t → t2 − t1]), (w,X′) ∈ T F((s′1, σ)) whereX′ = TR((s′2, σ[t →

t2 − t1])) + t2 = {(t2 + t′,a)|a ∈ Act∧ ¬[(a = β) ∧ (σ[t → t2 − t1 + t′] |= P3)] ∧ ¬[(a =

γ)∧(σ[t → t2−t1+t′] |= P2ΘP4)]}. Since(P2ΘP4)(t) ≡ ∃t3, t4[t = t3+t4∧P2(t3)∧P4(t4)]
and∃t′1, t′2[(t′ = t′1 + t′2) ∧ (σ[t → t2 − t1 + t′1] |= P2) ∧ (σ[t → t′2] |= P4)] if and only
if σ[t → t2 − t1 + t′] |= ∃t3, t4[t = t3 + t4 ∧ P2(t3) ∧ P4(t4)] for any t2, t′ ∈ R+,
X′ = {(t2 + t′,a)|a ∈ Act∧¬[(a = β)∧ (σ[t → t2− t1 + t′] |= P3)] ∧¬[(a = γ)∧ (σ[t →
t2 − t1 + t′] |= ∃t3, t4[t = t3 + t4 ∧ P2(t3) ∧ P4(t4)])] } = X. Thus,(w,X) ∈ T F((s′1, σ)).

10

If s(2)
1 = s3, then there exists somet′1 ∈ R+ such thatσ[t → t′1 − t1] |= P2, σ[t →

t2 − t′1] |= P4, σ(1)
2 = σ[t → t2 − t′1], (s1, σ)

t1
=⇒w

α
=⇒w (s2, σ)

t′1−t1
=⇒w (s2, σ[t → t′1])

t2−t′1
=⇒w

(s3, σ[t → t2− t′1]), andX = TR((s3, σ[t → t2− t′1])) + t2 = {(t2 + t′,a)|a ∈ Act∧¬[(a =

γ) ∧ (σ[t → t2 − t′1 + t′] |= P4)]}. Sinceσ[t → t′1 − t1] |= P2 andσ[t → t2 − t′1] |= P4

for somet′1 ∈ R+, σ[t → t2 − t1] |= P2ΘP4 holds. Thus,(s′1, σ)
t1

=⇒w

α
=⇒w (s′3, σ)

t2−t1
=⇒w

(s′3, σ[t → t2 − t1]) holds. Moreover,(w,X′) ∈ T F((s′1, σ)) whereX′ = TR((s′3, σ[t →
t2 − t1])) + t2 = {(t2 + t′,a)|a ∈ Act∧ ¬[(a = γ) ∧ (σ[t → t2 − t1 + t′] |= P2ΘP4)]} =

{(t2 + t′,a)|a ∈ Act ∧ ¬[(a = γ) ∧ ∃t3, t4[(t2 − t1 = t3 + t4) ∧ (σ[t → t3] |= P2) ∧
(σ[t → t4] |= P4)]] }. By lettingt3 = t′1 − t1 and t4 = t2 − t′1, X′ = {(t2 + t′,a)|a ∈
Act∧ ¬[(a = γ)∧ ∃t′1[(σ[t → t′1 − t1] |= P2)∧ (σ[t → t2 − t′1] |= P4)]] } = X. Therefore,
(w,X) ∈ T F((s′1, σ)).

Similarly, we can prove that(w,X) ∈ T F((s′1, σ)) if k ≥ 2, β = τ, or γ = τ.
Therefore,T F((s1, σ)) ⊆ T F((s′1, σ)).

Conversely, choose arbitrary timed failure(w,X) ∈ T F((s′1, σ)). We will show
that (w,X) ∈ T F(s1, σ). Similar to the proof ofT F((s1, σ)) ⊆ T F((s′1, σ)), w =

〈(t1,a1) · · · (tk,ak)〉 for somek ∈ N0, t1, . . . , tk ∈ R+, and a1, . . . , ak ∈ Act. From

Definition 7,(s′1, σ)
t1

=⇒w

a1
=⇒w (s′(1)

1 , σ(1)
1)

t2−t1
=⇒w

a2
=⇒w · · ·

tk−tk−1
=⇒ w

ak
=⇒w (s′(k)

1 , σ(k)
1)

tk+1−tk
=⇒ w

(s′(k+1)
1 , σ(k+1)

1 for sometk+1 ∈ R+, s′(1)
1 , . . . , s′(k+1)

1 ∈ S andσ(1)
1 , . . . , σ(k+1)

1 ∈ Val and

X = {(tk+1 + t,a)|(t,a) ∈ TR((s′(k+1)
1 , σ(k+1)

1))}. From the definition ofM′, a1 = α if k ≥ 1
and a2 may beβ [γ] if k ≥ 2 andβ [γ, resp.] is observable (i.e.,β ∈ Act [γ ∈ Act,
resp.]).
[Case ofk = 0]
If k = 0, thenw = 〈〉 andX = {(t1 + t′,a)|(t′,a) ∈ TR((s′(1)

1 , σ(1)
1))}. From the definition

of M′, s′(1)
1 = s′1, σ(1)

1 = σ[t → t1], andTR((s′1, σ1[t → t1])) = {(t′,a)|a ∈ Act∧ ¬[(a =

α) ∧ (σ[t → t1 + t′] |= P1)]}. ThusX = {(t1 + t′,a)|(t′,a) ∈ TR((s′1, σ1[t → t1]))} =

{(t1 + t′,a)|a ∈ Act∧¬[(a = α)∧ (σ[t → t1 + t′] |= P1)]}. Then, from the definition ofM,

(s1, σ)
t1

=⇒w (s1, σ[t → t1]) and (w,X′) ∈ T F((s1, σ) whereX′ = {(t1 + t′,a)|(t′,a) ∈
TR((s1, σ[t → t1]))} = {(t1 + t′,a)|a ∈ Act∧ ¬[(a = α) ∧ (σ[t → t1 + t′] |= P1)]} = X.
Therefore,(w,X) ∈ T F((s1, σ)).
[Case ofk = 1 and β, γ ∈ Act]
If k = 1 andβ, γ ∈ Act, thenw = 〈(t1, α)〉, σ[t → t1] |= P1, s′(1)

1 = s′(2)
1 , σ(1)

1 = σ, s(2)
1 is

eithers′2 or s′3, and(s1, σ)
t1

=⇒w

α
=⇒w (s(1)

2 , σ)
t2−t1
=⇒w (s(1)

2 , σ(1)
2).

If s(1)
1 = s(2)

1 = s′2, thenσ(1)
2 = σ[t → t2 − t1] and X = {(t2 + t′,a)|(t′,a) ∈

TR((s′2, σ[t → t2 − t1]))} = {(t2 + t′,a)|a ∈ Act∧ ¬[(a = β) ∧ (σ[t → t2 − t1 + t′] |=
P3)]∧¬[(a = γ)∧ (σ[t → t2− t1 + t′] |= P2ΘP4)]}. Since(s1, σ)

t1
=⇒w

α
=⇒w (s2, σ)

t2−t1
=⇒w

(s2, σ[t → t2− t1]), (w,X′) ∈ T F((s1, σ)) whereX′ = {(t2 + t′,a)|(t′,a) ∈ TR((s2, σ[t →
t2 − t1]))} = {(t2 + t′,a)|a ∈ Act∧ ¬[(a = β) ∧ (σ[t → t2 − t1 + t′] |= P3)] ∧ ¬[(a =

γ) ∧ ∃t′1, t′2[(t′ = t′1 + t′2) ∧ (σ[t → t2 − t1 + t′1] |= P2) ∧ (σ[t → t′2] |= P4)]] }. Since
(P2ΘP4)(t) ≡ ∃t3, t4[t = t3 + t4 ∧ P2(t3) ∧ P4(t4)] and∃t′1, t′2[(t′ = t′1 + t′2) ∧ (σ[t →
t2 − t1 + t′1] |= P2) ∧ (σ[t → t′2] |= P4)] if and only ifσ[t → t2 − t1 + t′] |= ∃t3, t4[t =

t3+ t4∧P2(t3)∧P4(t4)] for anyt2, t′ ∈ R+, X′ = {(t2+ t′,a)|a ∈ Act∧¬[(a = β)∧ (σ[t →
t2−t1+t′] |= P3)]∧¬[(a = γ)∧(σ[t → t2−t1+t′] |= ∃t3, t4[t = t3+t4∧P2(t3)∧P4(t4)])] } =

X. Thus,(w,X) ∈ T F((s1, σ)).
If s′(1)

1 = s′(2)
1 = s′3, thenσ′(2)

1 = σ[t → t2 − t1], σ[t → t2 − t1] |= P2ΘP4,

(s′1, σ)
t1

=⇒w

α
=⇒w (s′3, σ)

t2−t1
=⇒w (s′3, σ[t → t2 − t1]), and (w,X) ∈ T F((s′1, σ)) where

X = {(t2 + t′,a)|(t′,a) ∈ TR((s′3, σ[t → t2 − t1]))} = {(t2 + t′,a)|a ∈ Act ∧ ¬[(a =

11

s1

s2

s3

s4

s6

s7

s5 s10

s11 s12

s8 s9

][@? 11 ytxt ≤≤α

][@? 55 ytxt ≤≤τ

][@? 22 ytxt ≤≤β

][@? 33 ytxt ≤≤γ][@? 44 ytxt ≤≤δ

][@?' 66 ytxt ≤≤α][@?' 77 ytxt ≤≤β

][@?' 88 ytxt ≤≤γ][@?' 99 ytxt ≤≤δ

][@?'' 1010 ytxt ≤≤α

][@?'' 1111 ytxt ≤≤β

Act∈′′′′∀ βαβα ,,,

}{,,,,, τδγβαδγ ∪∈′′′′∀ Act

Figure 3: Abstraction for Sequential Structures in Presence of Outgoing/Incoming
Transitions (Before Abstraction)

γ)∧ (σ[t → t2− t1 + t′] |= P2ΘP4)]} = {(t2 + t′,a)|a ∈ Act∧¬[(a = γ)∧∃t3, t4[(t2− t1 =

t3 + t4)∧ (σ[t → t3] |= P2)∧ (σ[t → t4] |= P4)]] }. Then, sinceσ[t → t2 − t1] |= P2ΘP4,
there exists somet′1 ∈ R+ such thatσ[t → t′1 − t1] |= P2, σ[t → t2 − t′1] |= P4,

(s1, σ)
t1

=⇒w

α
=⇒w (s2, σ)

t′1−t1
=⇒w (s2, σ[t → t′1])

t2−t′1
=⇒w (s3, σ[t → t2 − t′1]), and(w,X′) ∈

T F((s1, σ)) whereX′ = {(t2 + t′,a)|(t′,a) ∈ TR((s3, σ[t → t2 − t′1]))} = {(t2 + t′,a)|a ∈
Act∧ ¬[(a = γ) ∧ (σ[t → t2 − t′1 + t′] |= P4)]}. By lettingt3 = t′1 − t1 andt4 = t2 − t′1,
X′ = {(t2 + t′,a)|a ∈ Act∧ ¬[(a = γ) ∧ ∃t3, t4[t = t3 + t4 ∧ P2(t3) ∧ P4(t4)])] } = X.
Therefore,(w,X) ∈ T F((s1, σ)).

Similarly, we can prove that(w,X) ∈ T F((s1, σ)) if k ≥ 2, β = τ, or γ = τ.
Therefore,T F((s′1, σ)) ⊆ T F((s1, σ)).

SinceT F((s1, σ)) ⊆ T F((s′1, σ)), T F((s1, σ)) = T F((s′1, σ)) holds. From Defini-
tion 8, (s1, σ) ≡t f (s′1, σ).

More general case is that there are some outgoing/incoming transitions ons1, s2

ands3, as shown in Fig 3. In this case, all the source states of the incoming transition
of s2 must be stable in order to satisfy the congruence property in Theorem 1. In Fig 3,
the outgoing transitions of the states1 ands6 are observable. If this is satisfied, then all
the incoming transitions ofs2 are converted into the nondeterministic choice, as shown

in Fig 4. The internal transitions2
τ@?t[x5≤t≤y5]−→ s3 is eliminated similarly, but sinces3

has some incoming transitionss8
α′@?t[x6≤t≤y6]−→ s3 and s9

β′@?t[x7≤t≤y7]−→ s3, these transi-

tions and the original outgoing transitionss3
γ′@?t[x8≤t≤y8]−→ s5 and s3

δ′@?t[x9≤t≤y9]−→ s10

of the states3 are preserved. Then, the time passage of the transitions2
τ@?t[x5≤t≤y5]−→

s3 are moved into the transitionss2
γ′@?t[x5+x8≤t≤y5+y8]−→ s5, s′2

γ′@?t[x5+x8≤t≤y5+y8]−→ s5,

s2
δ′@?t[x5+x9≤t≤y5+y9]−→ s10, ands′2

δ′@?t[x5+x9≤t≤y5+y9]−→ s10, similarly.
Formally, the abstraction rule for sequential structures is defined as follows:

Definition 10 TheAbstraction Rule for Sequential Structuresfor PTIA is defined as a

12

s1

s2’

s3

s4

][@? 33 ytxt ≤≤γ

s6

s7 s5 s10

s11

s12

s8 s9

][@?' 66 ytxt ≤≤α

][@?' 77 ytxt ≤≤β

][@?' 88 ytxt ≤≤γ

][@?' 99 ytxt ≤≤δ

][@?'' 1010 ytxt ≤≤α

][@?'' 1111 ytxt ≤≤β

s2

][@? 44 ytxt ≤≤δ

][@? 22 ytxt ≤≤β

][@? 11 ytxt ≤≤α

][@?' 9595 yytxxt +≤≤+δ
][@?' 8585 yytxxt +≤≤+γ

][@?' 9595 yytxxt +≤≤+δ

][@?' 8585 yytxxt +≤≤+γ

][@? 22 ytxt ≤≤β

][@? 11 ytxt ≤≤α

Figure 4: Abstraction for Sequential Structures in Presence of Outgoing/Incoming
Transitions (After Abstraction)

subgraph transformation functionAbsS eq(M) on a PTIAM that transforms some sub-
graphMsub of the transition graph ofM into M′sub, whereMsub consists of a set of tran-

sitions
⋃

i∈I {s1,i
αi@?t[P1,i]−→ s2}∪ {s2

τ@?[P2]−→ s3}∪⋃
j∈J{s2

β j@?[P3, j]−→ s4, j}∪⋃
k∈K{s3

γk@?[P4,k]−→
s5,k}, M′sub consists of

⋃
i∈I {s1,i

αi@?t[P1,i]−→ s2, s1,i
αi@?[P1,i]−→ s3} ∪⋃

j∈J{s2
β j@?[P3, j]−→ s4, j} ∪

⋃
k∈K{s2

γk@?[P2ΘP4,k]−→ s5,k, s3
γk@?[P2ΘP4,k]−→ s5,k}, eachs1,i (i ∈ I) is a stable state,αi ∈ Act,

β j , γk ∈ Act∪ {τ}, andP1,i ,P2,P3, j ,P4,k ∈ Intvl(Var) for anyi ∈ I , j ∈ J, k ∈ K.

If there are some other incoming transitionssl
6

δl@?t[Ql]−→ s3 (l ∈ L), then a new state
s′3 is created and all the incoming and outgoing transitions ofs3 is copied into those of
s′3 before applying this rule. 2

If it is not confused, we also consider the abstraction functionAbsS eq() as the
mapping from control states ofM to the corresponding states ofAbsS eq(M).

Then, we have the following theorem:

Theorem 2 For any stable states, if s
α@?t[P]−→ s1

τ@?t[Q]−→ s2, any pathπ beginning withs

contains no loops, and the internal transitions1
τ@?t[Q]−→ s2 is observably bounded, then

for anyσ, (s, σ) ≡t f (AbsS eq(s), σ).
Proof. (sketch) From Theorem 1 and Lemma 1, we can easily prove the general case
by using induction on the number of the branches and using the congruence property
(Theorem 1).

4.2.3 Abstraction for Branching Structures

The abstraction for branching structures is illustrated in Fig. 5. It is clear that any
external observer cannot find which branch is selected if each branch consists of one
transition with the same action name, the same time constraint, and the same desti-
nation state. Thus, we leave just one of these branches. More generally, if there are

13

s1

][@? 11 ytxt ≤≤α Abs

s1

s2

][@? 11 ytxt ≤≤α

{ }Actα τ∀ ∈ ∪
s2

][@? 11 ytxt ≤≤α

Figure 5: Abstraction for Branching Structures

multiple branchess1
a@?t[Pi]−→ s2 (i ∈ I), then they are abstracted to just one transition

s1
a@?t[

∨
i∈I Pi]−→ s2.

Formally, the abstraction rule for branching structures is defined as follows:

Definition 11 TheAbstraction Rule for Branching Structuresfor PTIA is defined as a
subgraph transformation functionAbsBranch(M) on a PTIAM that transforms some
subgraphMsub of the transition graph ofM into M′sub, whereMsub consists of a set of

transitions
⋃

i∈I {s1
α@?t[Pi]−→ s2}, M′sub consists of{s1

α@?t[
∨

i∈I Pi]−→ s2}, α ∈ Act∪ {τ}, and
Pi ∈ Intvl(Var) for anyi ∈ I . 2

Similar toAbsS eq(), we consider the abstraction functionAbsBranch() as the map-
ping from a PTIAM to the modified PTIAM′

Since the following theorem is rather straightforward, here we only show the re-
sults.

Theorem 3 For anys ∈ S andσ ∈ Val, (s, σ) ≡t f (AbsBranch(s), σ). 2

4.3 Terminating Property of Abstraction Algorithm

Our proposed abstraction algorithm is to apply repeatedly the abstraction rules in Sec-
tion 4.2 until no changes occur. In this section, we show that this abstraction algorithm
is ensured to terminate.

Firstly, we define the abstraction algorithm more precisely.

Definition 12 Abstraction Algorithmis defined as follows:

1. Input PTIAM.

2. Apply Abstraction Rule for Sequential Structures toM.

3. Apply Abstraction Rule for Branching Structures toM.

4. Repeat (2)-(3) until no changes occurred inM.

5. Output PTIAM. 2

Definition 13 Let Abs() be the abstraction function which represents the application
of eitherAbsS eq() or AbsBranch(). 2

Then, the following theorem holds.

14

Theorem 4 For any PTIAM, there exists some natural numbern such thatAbsn(M)
contains no internal transitions. Here,Absn(M) means the PTIA to which the abstrac-
tion rules are appliedn times.
Proof. (sketch) From Definition 13, it can be proven that the functionAbs() generally
monotonically decreases the number of internal transitions. Moreover, it can be shown
that any internal transitions can be eliminated by the proposed abstraction rules if
their directly preceding transitions are observable and they are observably bounded.
Furthermore, since the transition graph is a DAG and the initial state is stable, we can
repeatedly apply the abstraction rules from the top to the bottom of the DAG. From the
fact above, we can prove the theorem.

From this theorem, the following corollary immediately holds.

Corollary 1 The abstraction algorithm in Definition 12 eventually terminates for any
input M. 2

5 Equivalence Checking

In this section, we show that parametric timed failure equivalence checking on PTIA
is reduced to parametric timed strong bisimulation checking on PTIA without internal
transitions.

By applying the algorithm of Definition 12 to two PTIAsM1 and M2, we obtain
two PTIAsAbs(M1) andAbs(M2), which have no internal transitions and timed failure
equivalent toM1 andM2, respectively. On the other hand, from the result of Ref.[14],
we can obtain the parameter condition in order thatAbs(M1) andAbs(M2) are timed
strong bisimulation equivalent. Since timed strong bisimulation equivalence implies
timed failure bisimulation equivalence, and timed failure equivalence satisfies the tran-
sitive law, the obtained parameter condition is also the parameter condition in order
thatM1 andM2 are timed failure equivalent.

Definition 14 A binary relationRon states of a timed LTS is atimed strong bisimula-
tion if the following condition hold:

If (s1, σ1)R(s2, σ2), then for anyα ∈ Act∪ R+ ∪ {τ},

1. ∀ s′1, σ
′
1[(s1, σ1)

α−→ (s′1, σ
′
1) ⇒

∃s′2, σ
′
2 [(s2, σ2)

α−→ (s′2, σ
′
2) ∧ (s′1, σ

′
1)R(s′2, σ

′
2)]] ,

and,

2. ∀ s′2, σ
′
2[(s2, σ2)

α−→ (s′2, σ
′
2) ⇒

∃s′1, σ
′
1 [(s1, σ1)

α−→ (s1, σ
′
1) ∧ (s′1, σ

′
1)R(s′2, σ

′
2)]]

We say that states(s1, σ1) and (s2, σ2) are timed strong bisimulation equivalent,
denoted by(s1, σ1) ≡tsb (s2, σ2) if and only if there exists a timed strong bisimulation
Rsuch that(s1, σ1) R (s2, σ2).

The following relationship holds among timed strong bisimulation equivalence,
timed weak bisimulation equivalence, and timed failure equivalence

Proposition 2 For any two concrete states(s1, σ1) and(s2, σ2) of a timed LTS,(s1, σ1) ≡tsb

(s1, σ1) implies (s1, σ1) ≡twb (s1, σ1), and (s1, σ1) ≡tsb (s1, σ1) implies (s1, σ1) ≡t f

(s1, σ1). 2

15

From the discussions above, the following theorem holds.

Theorem 5 For any PTIAsM1 and M2, if there exists some natural numbersn andm
such thatAbsn(M1) andAbsm(M2) contain no internal transitions, andAbsn(M1) ≡tsb

Absm(M2) if and only ifM1 ≡t f M2. 2

6 Conclusion

In this paper, we proposed a parametric time-interval automaton(PTIA) and its trans-
formation algorithm to eliminate internal actions while preserving timed failure equiv-
alence, and showed that parametric timed failure equivalence checking on PTIAs can
be reduced to the existing parametric timed strong bisimulation equivalence checking
method without internal transitions.

The future work is to relax some of the restrictions imposed on target PTIAs, es-
pecially for the loops. For preserving timed failure equivalence, we confirmed that
abstraction is still possible by the proposed abstraction rules in some cases containing
loops, but there are some weird examples the proposed abstraction rules cannot be ap-
plied. On the other hand, for preserving timed trace equivalence, we are successfully
developed the abstraction algorithm for unrestricted PTIAs. We are currently working
on PTIAs containing various loop structures and developing more general abstraction
algorithms for preserving timed failure equivalence and/or timed trace equivalence.

References

[1] R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of
clocks. InProc. of CONCUR’94, volume 836 ofLecture Notes in Computer
Science, pages 162–177. Springer-Verlag, 1994.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
Proc. 25th ACM Annual Symp. on the Theory of Computing (STOC’93), pages
592–601, 1993.

[3] J. Davies and S. Schneider. A brief history of timed CSP.Theoretical Comput.
Sci., 138:243–271, 1995.

[4] D. de Frutos, N. Ĺopez, and M. Ńuñez. Global timed bisimulation: An introduc-
tion. In Proc. of Joint Conf. on Formal Description Techniques for Distributed
Systems and Communication Protocols XII, and Protocol Specification, Testing,
and Verification XIX (FORTE/PSTV’99), pages 401–416, 1999.

[5] R. de Nicola and M. Hennessy. Testing equivalence for processes.Theoretical
Comput. Sci., 34:83–133, 1984.

[6] M. Hennessy and H. Lin. Symbolic bisimulations.Theoretical Comput. Sci.,
138:353–389, 1995.

[7] M. Hennessy and T. Regan. A process algebra for timed systems.Information
and Computation, 117:221–239, 1995.

[8] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

16

[9] K. G. Larsen and Y. Wang. Time abstracted bisimulation: Implicit specifica-
tions and decidability. In S. Brookes, M. Main, A. Melton, M. Mislove, and
D. Schmidt, editors,Proc. of 9th Int’l Conf. on Mathematical Foundations of
Programming Semantics (MFPS’93), volume 802 ofLecture Notes in Computer
Science, pages 160–175. Springer-Verlag, Apr. 1993.

[10] Z. Li and H. Chen. Computing strong/weak bisimulation equivalences and ob-
servation congruence for value-passing processes. InProc. of Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pages
300–314, 1999.

[11] H. Lin. Symbolic transition graph with assignment. InProc. of CONCUR’96,
Lecture Notes in Computer Sciences. Springer-Verlag, Aug. 1996.

[12] G. Lowe and J. Ouaknine. On timed models and full abstraction. InProc.
of the 21st Int. Conf. on Mathematical Foundations of Programming Semantics
(MFPS2005), 2005.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] A. Nakata, T. Higashino, and K. Taniguchi. Time-action alternating model for
timed LOTOS and its symbolic verification of bisimulation equivalence. In
R. Gotzhein and J. Bredereke, editors,Proc. of Joint Int’l Conf. on Formal De-
scription Techniques for Distributed Systems and Communication Protocols, and
Protocol Specification, Testing, and Verification (FORTE/PSTV’96), pages 279–
294. IFIP, Chapman & Hall, 1996.

[15] G. M. Reed and A. W. Roscoe. The timed failures-stability model for CSP.The-
oretical Comput. Sci., 211:85–127, 1999.

[16] S. Schneider. An operational semantics for timed CSP.Information and Compu-
tation, 116(2):193–213, 1995.

[17] F. Wang. Parametric timing analysis for real-time systems.Information and
Computation, 130(2):131–150, 1996.

17

