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Abstract In this paper, we propose a language LOTOS/T, which is an enhance-
ment of Basic LOTOS. LOTOS/T enables us to describe time constraints in formulas
of 1st-order predicate logic. The user only describes the logical relation of time at
which each action must be executed. Use of equality (=) and inequality (<) as
the time constraints enables us to describe intervals, timeout and delay easily. We
define the syntax and semantics of LOTOS/T formally. The semantic model of
LOTOS/T is the Labelled Transition System (LTS). We give the inference rules
for constructing the LTS’s from given LOTOS/T expressions. The LTS’s can be
constructed mechanically. Then, we show how flexible and convenient to specify
practical real-time systems in LOTOS/T with an example. We also define both
timed and untimed bisimulation equivalences and give a method to verify their
equivalences mechanically.
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1. Introduction

Formal languages based on Process Algebra, such as CCS[1], CSP[2], ACPI[3],
LOTOS[4] and so on, have been proposed to specify communication protocols and
distributed systems. Although these languages can express temporal ordering of
the actions, they cannot express explicit time constraints among the actions. It is
necessary for the real-time systems and communication protocols to specify discrete
quantitative time, because time constraints of such systems are frequently altered
depending on implementations. In such cases, we must guarantee that the system’s
essential behaviour would not be changed.

In the latest years many languages have been proposed to describe real-time prop-
erties [5-10]. For example, timed extensions of CCS[5-7], introduced several primi-
tive operators such as delay and timeout operators to describe real-time properties.
However, in these languages, even describing a simple time constraint that some



action has to be done within a given time interval yields to a complicated descrip-
tion. Although ACP,[8], based on ACP, can associate any time intervals ranged
over reals to any action, there’s (currently) no way to prove weak bisimulation
equivalence. Moreover, the semantic model of ACP, contains infinite states, which
makes it difficult to apply many other verification methods. TIC[9], based on LO-
TOS, is restricted to specify time constraints between only adjacent two actions.
CELOTOSJ[10] introduced clocks, which can read or reset to zero, to describe time
constraints among arbitrary actions. However, CELOTOS cannot specify urgency
of actions!

In this paper, we propose a language ‘LOTOS/T’, which improved the issues
described above, including the urgency issue. LOTOS/T, which is a timed en-
hancement of Basic LOTOS, allows us to describe time constraints by the 1st-order
predicate logic formulas. The 1st-order predicate logic is well-studied, suitable for
automatic verification and makes it easy to describe complicated constraints in ‘as
is’ way. Time is considered discrete. Each process has its own time-table(clock),
which is started when it is invoked. Time is expressed as a non-negative integer.
The semantic model of LOTOS/T is the Labelled Transition System (LTS) used in
LOTOS. Unit time progress is expressed by the action tic. We give the inference
rules for constructing the LTS’s from given LOTOS/T expressions. Time constraints
are described by predicates on integers, which must contain a special free variable ¢
(denotes the current time) and may contain other free variables, associated to each
action. Use of equality(=) and inequality (<) in the predicate will enable us to
describe intervals, timeout or delay easily and naturally. Moreover, time at which
an action occurred can be assigned to a variable. So it is possible to describe time
constraints against actions which are not direct successors. For upward compati-
bility, if no predicate are associated to the action, the predicate ‘true’ is assumed
for its time constraint. In this case, the action is considered executable at any mo-
ment (not urgent). The LTS’s can be constructed from given LOTOS/T expressions
mechanically using the inference rules.

Two equivalences are introduced, the first is timed (strong/weak) bisimulation
equivalence and the last is untimed bisimulation equivalence. Timed bisimula-
tion equivalence is used for checking whether two systems are equivalent and have
the same time constraints. Untimed bisimulation equivalence is used for checking
whether two systems are equivalent in spite of the different time constraints. If the
corresponding LTS’s are finite, we can easily check the two bisimulation equivalences
by the algorithms in [13, 14].

This paper is organized as follows. In Section 2, the syntax and semantics of
LOTOS/T are defined formally. In Section 3, the definition of equivalences related
to timed semantics is given. In Section 4, a simple but practical example is provided.
Section 5 concludes this paper.

1We say that an action is urgent if the action must necessarily be executed at the current time.
The urgency issue is mentioned in many papers including [11, 12].



2. Definitions

2.1. Syntax
The syntax of LOTOS/T is defined as follows.

Definition 1 Behaviour expressions of LOTOS/T are defined as follows (the prior-
ity of operators are analogous to LOTOS):

E := stop (non-temporal deadlock)
| exit (successful termination)
| a;F (untimed action prefix)
| a[P(t,Z)]; E (time constrained action prefix)
| E[F (choice)
| E|||E (interleaving)
| E|E (synchronization)
| E|[A]|E (generic parallel composition)
| E[>F (disabling)
| E>>FE (enabling)
| hide Ain E (hiding)
| Plg1,---,9:(8) (process invocation)

where a € ActU {¢} ( Act denotes a finite set of all observable actions, 7 denotes an
internal action) , A C Act, k € N (N denotes a set of natural numbers), and P(t, Z)
stands for a predicate which has a free variable ¢, denoting the current time, and
other variables Z ( Z denotes a vector of the variables). & denotes a vector of the
value-expressions.

Predicates are well-formed formulas of 1st-order theory of integers containing =
< as atomic predicates, +, — as functions. Var denotes a set of all variables of
the 1st-order theory. Note that this 1st-order theory is decidable because it is,
essentially, a subset of Presburger Arithmetics[15]. O

First, we will give an informal explanation of LOTOS/T.

Example 1
B =a[2<t<3Azg=1];b[t = zo + 3];stop

B denotes a process which executes a between time 2 and 3 and executes b after 3
unit of time elapsed. The predicate o = ¢ denotes that the executing time of a is
assigned to the variable zq. O

The semantic model of LOTOS/T is the LTS. We intend that the LTS in Figure 1
denotes the operational semantics of B.

This LTS is obtained as follows. In Figure 1, the root node corresponds to B.
First, only the unit time progress action tic is executable for B. Therefore, the
edge 22, is appended to the root node. If the tic is executed, then one unit time

elapsed. Since the current time is incremented, [t + 1/t|B is obtained as the new
behaviour expression. Here, [e/z]B denotes a behaviour expression B whose every



occurrence of the variable z is replaced with the expression e.

At the state [t + 1/t]B, only tic is executable. Then [t + 1/{]B =5 [t + 2/t|B
is appended. At the state [t + 2/t|B, the tic and action a are executable. If the
tic is executed, then [t + 3/t]B, that is, a[2 < t+3 <3 Azo =t +3];bt +3 =
zo + 3]; stop is obtained. If the tic was executed for [t + 3/t|B, then the action a
could never be executed. In this case, we say that the action a is urgent, that is, the
action a must be executed immediately (before the tic is executed). Then only a is
executable. If a is executed, then “0” is assigned? to the variable ¢ in the predicate
“2<t+3<3Azo=1t+ 3", which has already been aged by 3 units of time from
the initial predicate “2 < ¢t < 3 A g = t” through the operation [t + 3/t]. Since
zy = t + 3, the value of the variable z, is fixed to 3, and b[t + 3 = 3 + 3|;stop is
obtained as the new state (behaviour expression). So b is executed after 3 units of
time are elapsed.

Next, we will give a formal definition of LOTOS/T. First, we will introduce the
notion of the predicate contexts and defined /undefined variables. In order to discuss
whether satisfiability of predicates are decidable, we must define which variables have
some fixed values and which ones are not. Consider a predicate “t = z° — 72® + 4”.
If some value is assigned to x, satisfiability of the predicate is easy to decide for any
given values of ¢. However, if no values are assigned to z, for a given value of ¢,
a 5th-degree equation must be solved to decide satisfiability. So we need a formal
definition of whether or not a variable’s value is defined. We also need a notion of
predicate contexts because the definition of a defined/undefined variable depends
on where the variable occurs in a behaviour expression of LOTOS/T.

Definition 2 Predicate contexts are syntactically defined by the following BNF.
Here, E is the syntactical component representing a behaviour expression which is
used in Definition 1.
C := ale]; E|a|P(t,z)];C
| CIE | ENC | C|[A]|E | E|[A]lC
| ClIIE | Ell|C'] ClIE | E||C
|C[>FE | E[>C|C>>FE|E>>C.

For example, let us consider the behaviour expression B in Example 1. For this
behaviour expression B, the following two predicate contexts are possible:

C = ale]; b[t = o + 3]; stop
C'=al2 <t < 3Axzo=t];ble];stop

Here, “o” denotes a time constraint of the current action. In the context C, the
variable “xy” is undefined because the value of the variable “xy” is not fixed until a

2Please note that assigning 0 to ¢ in the 3 units of time aged predicate “2 < t+3 < 3Azy =t+3”
is equivalent to assigning 3 to the variable ¢ in the initial predicate “2 <t < 3 A zg =t.” We only
have to check satisfiability of the predicate in a case of ¢ = 0, because behaviour expressions are

properly aged when e s added, in order to treat current time as O.



is executed. However, in the context C’, the variable z( is defined because the value
of o has been fixed before b is executed.

Formally, the defined/undefined variable are decided as follows. Here, DV ar(C)
and UVar(C) denote the sets of defined /undefined variables for a predicate context
C', respectively.

Definition 3 For any predicate context C';, DVar(C') C Var is defined recursively
as follows.

DVar(ale]; E i

)
DVar(a[P(t,z)];C) % {y|yis an element of z} U DVar(C)
DVar(CAE) ¥ DVar(C)

DVar(EAC) = DVar(C)
(& e {L 1Al [>>>})

And UVar(C) ¥ Var — DVar(C). O

Hereafter, we define the set of predicates P(t, ) which can be used in the predicate
context C'. We believe that the class of predicates Pres(C') defined in Definition 4
is reasonably wide, because time interval, whose bounds are expressed in linear ex-
pressions, can be written and the executed time of any preceded actions are referred
to in the expressions.

Definition 4 A set of predicates allowed to use in the predicate context C', denoted
as Pres(C), is defined as a minimum set which satisfies the following conditions:

o ‘oo <t < e “q<t"and “t < e,” are in Pres(C'). Here, ¢ and e,
denote arbitrary terms consisting of only integers, the variables in DVar(C),
and operators + and —. If ¢; and e, are the same, then “¢; < t < e,” is
abbreviated to “t = e,”.

o if P € Pres(C) and ¢ ¢ FVar(P)U DVar(C), then “P A (z = t)” is in
Pres(C).

o if P\, P> € Pres(C) and FVar(P,) N FVar(Py,) N UVar(C) = 0, then both
“PyV Py and “P; A Po” are in Pres(C).

e if P € Pres(C) and FVar(P)NUVar(C) =0, then “-P” is in Pres(C).
where F'Var(P) denotes a set of all free variables occurred in a predicate P. O

Note that the predicate P(t¢,Z) may be described as P(t, Z4, Z,) if necessary, where
the 2nd parameter Z; denotes a vector of the defined variables in z and the 3rd
parameter Z, denotes a vector of the undefined variables in Z under C.
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Figure 1. The semantics of B and D

Next, we will explain that Pres(C') defined in Definition 4 is restrictive in spite of
its expressive power, that is, satisfiability of a predicate in the class is still decidable.
For convenience, we refer to having such a desirable property as normal.

First of all, normal predicates are defined.

Definition 5 A predicate P(t, Z) is normal under a context C' if P(t,Z) satisfies the
following conditions.

1. (decidability) For any n € N and 9, satisfiabilities of the two formulas
def

P(n,9,%,) and (FP)(n,v) = 3t'3Z,[t' > n A P(t',7,Z,)| are decidable.

2. (uniqueness of substitution) For any n € N and 9, there exist unique values
¢ such that P(n,,¢) holds if the formula 3z,P(n,7,Z,) is satisfiable. Also
such values ¢ are computable from n and 7 i.e. there exists a partial recursive
function ¢p(n, ) such that 3z, P(n,v,Z,) implies P(n, v, ¢p(n,v)).

Remark: Condition 1 is needed to make sure that we can construct the semantical
model of the expression mechanically. Condition 2 is needed to avoid ambiguity of
assigned value to be assigned to variables. O

We say a behaviour expression B is normal iff all predicates appeared in B are
normal under its contexts, i.e. for any C' and P such that B = C'(P), P is normal
under C.

For the elements of Pres(C'), the following property holds.

Proposition 1 For any context C, all the predicates in Pres(C') are normal.

Proof. Since each predicate P in Pres(C') is described as a logical combination of
some integer linear inequalities, P and F P in Definition 5 are expressions in
Presburger Arithmetics [15]. Since it is known that satisfiability of Presburger
Arithmetics is decidable [15], satisfiabilities of P and F P are also decidable.
Therefore, Condition 1 in Definition 5 holds. Condition 2 also holds. For the
details, see [16]. O
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Figure 2. The semantics of £ and P

Pres(C') is useful for describing normal predicates. If other class of 1st-order theory
is considered, the conditions in Definition 5 does not always hold.

Example 2 Under the predicate context “a[t = z|; b[e]; stop”, “t = z?+2z+1Ay =
2t” satisfies the conditions 1 and 2 of Definition 5. However, “t = z24+2z+1Ay > t”
violates the condition 2, and “t = y°+9y?2°+2*” (Diophantine polynomial) violates
both. O

Example 3 The following example is also possible. The LTS for D is shown in Fig-
ure 1. In this example, time constraints between non-adjacent actions (the actions
a and c) are described.

D =alt=2ANxzo=t];(blxe <t <z +1];c[rg <t <+ 2];stop
[Jd[t = zo + z0); stop) O

Example 4 Other examples are given below. The first one contains untimed ac-
tion sandwiched between time-constrained actions, and infinite interval for the time
constraint. The second one describes an infinite behaviour.

1. E =alz =t];bclt >z + 2]; stop

2. P = at = 5]; stop[]b[t = 1]; P
The corresponding LTS’s are shown in Figure 2. O

In LOTOS/T, untimed or infinite behaviours may be described (for example, the
processes F and P in Example 4).

2.2. Operational Semantics

In this section, we will give the formal semantics of LOTOS/T. The operational
semantics of LOTOS/T is an extension of LOTOS. The difference is the treatment
of transitions of the extra action tic. Here we define the operational semantics of
LOTOS/T by giving an inference system of the transition relation (see Tables 1 and
2).



Table 1

The inference rules of transition relation: Part 1

Inaction
stop 25 stop (1) exit — stop (2)
exit 225 exit (3)
Action Prefix
P(0,¢) FP(1)
a[P(t,z)]; B — [¢/z|B (4) a[P(t,2);; B =5 a[P(t +1,2)]; [t + 1/]B (5)
a;B % B (6) a;B 25 a; [t + 1/t]B (7)
Internal Action
P(0,¢) -P(0,z) FP(1)
ilP(t,2)}; B [c/]B () P2 B ES P+ 1,2)[t+1/4B (9)
iiB - B (10)
Choice
———iff B € ActU {4,1} —— = iff B € ActU {6,1}
B.[|B, 2 B! (11) B.[|B; 2 B! (12)
B; 2% B! B, 2% B,
By[|B; = B}[|B (13)
B: 25 B! B, £S5 B, 25 B, B, £
By[|B; =S B} (14) Bi[|B; =5 B} (15)

2.2.1. Inaction

The behaviour expression stop is extended to express non-temporally deadlocked
process, which cannot do any other computations except the infinite sequence of
tic. The behaviour expression exit is extended to execute tic actions any times

before executing 4 action.

2.2.2. Action Prefix

The behaviour expression a[P(t,Z)]; B means that the action a can occur at time
n if P(n,¢) holds for some ¢. Because the predicate P is assumed to be normal,
satisfiability of P(n,Z) is decidable (from condition 1 of Definition 5), and the value
¢ which satisfies P(n,¢) is uniquely computable (from condition 2).

In order to express urgency, we define that the action tic cannot occur if the
action cannot happen in the future, i.e. FP(1) = 3t'3Z[t' > 1 A P(t',Z)] does not
hold. Satisfiability of FP(1) is also decidable (from condition 1).

The semantics of the untimed action prefix, a; B, is the same as that of a[true]; B.




2.2.3. Internal Action

For the behaviour expression 7; B, the internal action is considered always urgent,
so its execution is prior to tic action. The rest is similar to action prefix.

2.2.4. Choice

We define the choice operator be weak-choice[5], so our choice operator is non-
persistent. For example, “a[t = 1];stop” and “b[t = 2|;stop” are equivalent to

Table 2

The inference rules of transition relation: Part 2

Parallel
B, 2B B, 2. B B, 25 B! B, 25 B!
. iff B e AU{6} —
B1|[A]|B2 — By|[A]| B; (16) B1|[A]|B: — B;|[A]| B (17)
B, % B, . . B, % B} . .
” ifag AVa=1 " ifag AVa=1
B1|[A]| B — Bi|[A]| B B1|[A]|B: — Bi1|[A]| By
(18) (19)
o By|[Act)|B; = B’
B,|[0]|B, = B’ . L 1f[4cf]| B> = iff a € ActU {6, tic,i}
” iff a € AetU {6, tic,1i} By||B; - B’
Disable
a B
B Bj B B]
1 27 i e Actu{s,i}
Bi[> B, — Bi[> B, (22) B:[> B, 2 B! (23)
B, % B! B; 2% B! B, 2 Bl
By[> B, - B} (24) Bi[> B; 25 B}[> B} (25)
Enable
B, % B! B, % B!
Bi >> By — B} >> B, (26) By >> By -5 B, (27)
By 2% B, B, 2% B) By />
B; >> B, 25 B! >> B, (28)
Hide
B2 B .
iff B € (Act— A) U {6,:}
hide A in B -2 hide A in B’ (29)
a i tic ’ a
BT>B FacA B-—>B B74.—> foralla € A
hide A in B — hide A in B’ (30) hide A in B 25 hide A4 in B’ (31)
Process Invocation
le/z)B{gi/91,- .. ,91/9x} — B’ F a € ActU {tic,6,1} and
i
Plgi,. .. ,94](€) = B’ Plg1,.-.,9:|(Z) := B is a definition (32)
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“tic;a;stop” and “tic;tic;b;stop”, respectively. However, “a[t = 1|;stop[|b[t =
2]; stop” is not equivalent to “tic;a;stop||tic;tic;b;stop” because the choice is
occurred at time 0. It must be equivalent to “tic;(a;stop[Jtic;b;stop)”’. The
inference rules in Table 1 are introduced to construct the latter semantic model.

2.2.5. Parallel

Parallel operators (|||, ||, |[A]|) always synchronize tic actions in LOTOS/T.
Consequently, the time constraint of interaction is the logical product of the time
constraints of the actions in both processes.

ex.) In a;b]2 < t < 4];stop|[b]|c; b[3 < t < 5];stop, the time constraint of the
interaction b is 3 <t < 4.

2.2.6. Disable
The definition is similar to LOTOS except the tic action.

2.2.7. Enable
Similar to LOTOS, except tic synchronizes unconditionally and enabling is prior
to the tic action.

2.2.8. Hide
Similar to LOTOS, except tic occurs only if B cannot execute the hidden action
in order to express urgency of it.

2.2.9. Process Invocation
A process invocation behaves exactly the same as the behaviour at time 0, no
matter when it is invoked.

2.3. Consistency of the inference system

It is very important to notice that our inference system, used for defining op-
erational semantics, are consistent. An inference system is called consistent if the
existence of a transition is never deduced from the non-existence of the transition
itself. If an inference system is inconsistent, the semantic model cannot exist. Un-
fortunately, our inference system contains negative premises in some inference rules.
So consistency is not self-evident. However, our inference rules can be proved con-
sistent by using the stratification technique described in [17]. We omit the proof for
lack of space.

2.4. Example of LTS construction
By applying the inference rules shown in this section, we can construct the corre-
sponding LTS as follows. Let us consider the process E in Figure 2.

o E =alt =x|;b;c[t >z + 2|;stop — b; [t > 2];stop (by rule (4)),
o b;c[t > 2];stop 25 b;c[t + 1 > 2];stop (by rule (5)),

and so on.
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For the process P in Figure 2, the following actions are possible:
o P S qft = 4];stop[Jb[t = 0]; P (by rules (32), (13), (5)),
o aft = 4];stop[]b[t = 0]; P 25 aft = 3]; stop (by rules (14) and (5)),

and so on.

Note that we regard two states as the same if satisfiability of the corresponding
predicates for each ¢t on 0 < ¢ < oo are equivalent. For instance, w.r.t. F in Figure 2,
aft = z|; by c[t > = + 2|;stop He, aft +1 =z];b;c[t +1 > x + 2]; stop holds by the
inference rules. Here, satisfiabilities of two predicates of the action a, ¢ = x and
t + 1 = x, are equivalent, i.e.

Vi[0 <t = Fzft =z] = F2'[t + 1 = 2']] (33)

holds (Note that z in “¢ = 2” and x in “¢ + 1 = z” have no longer the same value.
So we describe the latter formula as “t + 1 = z'”).

Furthermore, for any value assignment of z and 2/, satisfying (33), into two pred-
icate two predicates of the action c,

Vo<t = [ >z+2]=[t'+1>2 +2] (34)

holds.
To summarize the idea above, we can verify whether F and [t + 1/t|E are repre-
senting the same state by checking satisfiability of the following predicate:

V$ [0 <ty = [Fz(ty =2z) =2t + 1 =2')| A
VaVe'[(ti=2) AN (ti+1=2") =
Vio[0 <to = [(te >z +2)=(ta+1> 2 +2)]]]] (35)

So we can state aft = z]; b; c[t > x +2];stop =5 aft = z]; b; c[t > z+2];stop (i.e.
this node has a self loop of tic).

Aging ( replacing ¢ with ¢ + 1 ) does not have an effect on process invocation,
since process name does not have the variable ¢ literally. For example, w.r.t. P in
Figure 2, P 225 aft = 4]; stopl]b[t = 0]; P —%, P holds by the inference rules. So
the corresponding LTS has a cycle, as shown in Figure 2.

3. Equivalence

3.1. Timed Bisimulation Equivalence

Definition 6 A relation R is timed strong bisimulation if the following condition
holds.

if BiRB, , then for any a € ActU {§,tic}, the following two conditions
hold:
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1. if By = B}, then 3B4[By, — B’ and B, RB}]
2. if By — B}, then 3B}[B; — B} and B,RBj)] O

Definition 7 The behaviour expressions B and B’ are timed strong bisimulation
equivalent, denoted by B ~; B’ iff there exists a timed strong bisimulation R such
that BRB'. O

The equational theory of timed strong bisimulation equivalence including expan-
sion theorem is given in [16].

Timed weak bisimulation equivalence (=;), where the internal action ¢ is consid-
ered unobservable, can also be defined similarly.

Example 5 The following two behaviour expressions are timed strong bisimulation
equivalent:

B=a[2<t<3Azq=1t;b[t =20+ 3|;B
C = aft = 2];b[t = 5]; C]]aft = 3];b[t = 6]; C

3.2. Untimed Bisimulation Equivalence

Here we introduce an untimed bisimulation equivalence where tic is considered
unobservable. Using this equivalence, we can prove whether two timed expressions
execute the same observable event sequences. Like timed bisimulation equivalence,
untimed bisimulation equivalence has two definitions, one is untimed strong bisim-
ulation equivalence, where only tic is considered unobservable, and the other is
untimed weak bisimulation equivalence, where both tic and ¢ are considered unob-
servable.

Definition 8 For each action a € (ActU {§} — {tic}) U {€}, the relation == over
behaviour expressions is defined as follows:

tic \x a tic \x s . . .
B =2, p'df B(t—lc>) — (—)*B, ¥f a€ ActU {6} — {tic} -
B(—)*B’ ifa=c¢

Definition 9 A relation R is untimed strong bisimulation if the following condition

holds:
if BiRB, , then for any a € (ActU {6} — {tic}) U {¢}, the following

conditions hold:
1. if By = B, then 3B}[B, == B} and B;RBj]
2. if By == B}, then 3B|[B; == B} and B, RB}] O
Definition 10 The behaviour expressions B and B’ are untimed strong bisimulation

equivalent, denoted by B ~, B’ iff there exists a weak bisimulation R such that

BRB'. 0J
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Untimed weak bisimulation equivalence, denoted by ~,, can be defined similarly.

Proposition 2 The behaviour expressions which are timed strongf/weak] bisimula-
tion equivalent are untimed strong[weak| bisimulation equivalent, respectively, i.e.:

B~,B =B~,B
B~ B = B~, B O

Proposition 3 ~, is not a congruence, i.e.:
3By, Bo[(By ~u B2) A (B[| By #u B[|By)]
Proof. Choose By = a[t = 0];stop, By = a[t = 2];stop and B = b[t = 1];stop. O

Note that from Proposition 3, untimed bisimulation equivalence is hardly suitable
for axiomatic proof system.

Example 6 Let B and D denote the following expressions, respectively:

B =a[2<t<3Azg=1];b[t =x¢+ 3];stop
D = aft = 2];stop|||b[3 < t < 5];stop

Then, B and D are untimed strong bisimulation equivalent because
R={([t+k/t|B,[t+1/t]D)|0 <k <3A0<1<2}
U{(b[t + k = m + 3];stop,b[3 <t+1 < 5|;stop)]2<m<3Ak<m+3A3<I<5}
U {(stop, stop)}

is an untimed strong bisimulation which satisfies BRD. O
In the following Proposition, we mention the decidability of these equivalences.

Proposition 4 If the corresponding LTS’s of both By and By are finite, then all the
equivalences defined above are decidable.

Proof. Analogous to [13, 14]. O

Note that the corresponding LTS of a behaviour expression is not always finite, but
if the LTS is finite, then equivalences are decidable from Proposition 4.

4. Example

Here we introduce a more practical example. The example shown in Figure 3
models a remote controller or something that has only one press button for input
and executes 4 output actions according to the timing patterns of pressing button.
The timing patterns are:
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ONE_KEY_CONTROLLER[p,r,1c,sc,dc]
:= pltip=t];
(1c[t1p+di<=t<=t1p+d4];r;0ONE_KEY_CONTROLLER
[1 rlt<tip+dil;
(p[t<tip+d2 and t2p=t];
(r[t<t2p+d3] ;dc[t2p+d3<=t<=t1p+d4] ; ONE_KEY_CONTROLLER
[1 slc[t2p+d3<=t<=t1p+d4];r;0ONE_KEY_CONTROLLER)
[1 scl[tip+d2<=t<=tip+d4];exit)

+ variables
tlp: time when the first press occurred.
t2p: time when the second press occurred.
+ constants
dl: threshold for the first short or lomng click
d2: timeout for the second click
d3: threshold for the second short or long click
d4: required maximum total delay between button press and result action

Figure 3. Timed specification of one-key controller

long click once,

short click once,

double short click and

short click followed by long click.

The second one is used for terminating, while others are continued to be accepted
infinitely. Pressing button is modeled by the sequence of the actions p (short for
‘press’) and r (short for ‘release’). The corresponding output actions are 1c (short
for ‘long click’), sc (short for ‘short click’) and dc (short for ‘double click’) and
slc ( short for ‘short and long click’). If d2+d3>d4, it may cause violation of time
constraint (temporal deadlock). And if d1>=d2, it may cause second click be lost.
So the sound implementation must satisfy d1<d2 and d2+d3<=d4.

This will be checked by constructing the LTS for some values to d1,d2,d3 and
d4 satisfying above. In the LTS, the temporally deadlocked state has no outgoing
arc including tic. Whether or not the behaviour has been modified because of the
time constraint is checked by verifying untimed bisimulation equivalence with the
untimed specification like Figure 4.
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UNTIMED_ONE_KEY_CONTROLLER[p,r,lc,sc,dc]
:=p; (i;1lc;r;UNTIMED_ONE_KEY_CONTROLLER
[1 r;(p;(r;dc;UNTIMED_ONE_KEY_CONTROLLER
[1i;slc;r;UNTIMED_ONE_KEY_CONTROLLER)
[1i;sc;exit)

Figure 4. Untimed specification of one-key controller

5. Conclusion

We have proposed a language LOTOS/T, a timed enhancement of Basic LOTOS.
LOTOS/T enables us to describe time constraints among actions in a flexible way
using formulas of 1st-order theory.

In order to construct the LTS from a given LOTOS/T expression mechanically,
we need a decision procedure for Presburger Arithmetics. We have developed the
decision procedure[18] on a Sun SparcStation ELC. For the predicates given in this
paper as examples, satisfiabilities of the predicates can be decided within one second.
Even for more complex predicates such as the logical combinations of ten integer
linear inequalities, their satisfiabilities can be decided within a few seconds in most
cases. Therefore, LOTOS/T is enough powerful for practical purposes and suitable
for mechanical proof method. We have developed LOTOS interpreter[19] and a
test system for LOTOS with data parameters[20]. Using these systems, we can
construct the LTS from a given LOTOS expression mechanically. Now we have a
plan to develop the decision procedure for proving the timed/untimed bisimulation
equivalences described in Section 3 by using the above tools.

We did not introduce timing-interaction operator defined in [11]. The strength
of this is that locality of specification is preserved, as mentioned in [11] (but differs
from Timed-Action LOTOS[11] because urgency is still supported in ours ). Urgency
of interaction can still be expressed in LOTOS/T by hiding the interaction from
outside, but urgency of observable interaction cannot be expressed. So expressive
power of LOTOS/T is weaker than Timed-Interaction LOTOS and Timed Petri

Nets.

Untimed bisimulation equivalence is introduced in order to consider the two pro-
cesses, which behave the same but in different time constraints (e.g. in different
speed), be equivalent. Similar but more advanced investigations are made for CCS
in [21, 22].
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