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Abstract

Verification of timed bisimulation equivalence is generally difficult because of state explo-
sion caused by concrete time values. In this paper, we propose a verification method to
verify timed bisimulation equivalence of two timed processes using a symbolic technique
similar to (Hennessy and Lin 1995). We first propose a new model of timed processes,
Alternating Timed Symbolic Labelled Transition System(A-TSLTS). In A-TSLTS, each
state has some parameter variables and those values determine its behaviour. Each tran-
sition in an A-TSLTS has a guard predicate. The transition is executable if and only if its
guard predicate is true under specified parameter values. In the proposed method, we can
obtain the weakest condition for a state-pair in a finite A-TSLTS to make the state-pair
be timed bisimulation equivalent. We also show that this result can be applied to the
language LOTOS/T(Nakata et al. 1994), a timed extension of LOTOS(ISO 1989).
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1 INTRODUCTION

Verification of timed bisimulation equivalence for timed processes is generally difficult
because of state explosion. There are some proposals to solve this problem(Holmer et al.
1991; Cerans 1992; Chen 1992; Alur et al. 1994). But they all have some restrictions in
describing time constraints of actions. On the other hand, for data-passing processes, a
verification method of bisimulation equivalence is proposed(Hennessy and Lin 1995). This
method has some advantages: (1). Its verification cost does not depend on data domain
nor absolute values of constants which we use in data constraints, and (2). the method
does not depend on predicates which we choose for describing data constraints (although
they should be decidable in order to verify the equivalence). It is desirable that there



exists a method to verify timed bisimulation equivalence which has the same advantages
as above.

In this paper, first, we propose a new model for describing timed processes, and then
we propose a method to verify timed bisimulation equivalence of two timed processes in
the proposed model using the technique so-called ‘symbolic bisimulation’(Hennessy and
Lin 1995).

A new model, Alternating Timed Symbolic Labelled Transition System(A-TSLTS, for
short), is introduced to describe time-constrained processes. Each state in an A-TSLTS
may have some parameter variables(eg. x, y). Each transition in an A-TSLTS has a guard
predicate such as ‘execute the transition a between x + 5 and y seconds from now.” The
guard predicate of a transition may contain any parameter variables associated to its
source state, any numerical operations on time domain, and any atomic predicates. We
can use any logic. The logic only needs to be decidable in order to verify the equivalence in
the proposed method. In this paper, only timed transitions are considered (data-passing
is ignored).

We model a time transition by a delay transition A9 with a delay variable d, which
stands for an amount of the delay (duration). This is the same as (Holmer et al. 1991). This
modeling has an advantage that we can treat durations equally as input/output data. So,

although we only handle time here, we can easily extend the result to the model which

handles both time and data-passing. Each delay transition ﬂ and action transition

— have guard predicates which may contain the delay variables and the parameter
variables at their source states (they possibly include some delay variables in former
delay transitions). We refer to such a model as “Timed Symbolic Labelled Transition
System (TSLTS).”

It is difficult to consider symbolic bisimulation(Hennessy and Lin 1995) on a TSLTS.

. .. d . . .
The reason is as follows. A delay transition Q whose amount of delay is d, is equivalent

to a sequence of delay transitions e(i;e(ﬂg - e(ﬂg where d; + dy 4+ - - 4+ d,, = d. Also, in

a TSLTS, it is possible that after A9 s executed, both ) and - may be executable.

So, in general, the sequence e(ige(ﬂg is not easily reduced to one transition. In order
to make a matching between two transitions which form a bisimulation, we must make
a (possibly infinitely many) sequence-to-sequence matching, which makes the problem
difficult. Therefore, in this paper, we assume our model to have alternating property.
Each state of a TSLTS must belong to one of the two kinds of sets of states, the one
is a set of idle states, and the other is a set of active states. From an idle state, only a
delay transition is possible and then it moves to an active state. From an active state,
some action transitions are possible. After one of them is executed, it comes back to an
idle state. We call such a restricted TSLTS as an Alternating TSLTS (A-TSLTS). In the
A-TSLTS model, we can make the bisimulation matching of delay transitions to one-to-
one. Consecutive execution of actions (without delay) can be expressed in an A-TSLTS
by inserting a delay transition of zero duration between two action transitions.

Using a similar algorithm as (Hennessy and Lin 1995), from a given state-pair we obtain
the weakest condition (similar to (Hennessy and Lin 1995), we refer to the condition
as most general boolean, mgb for short) to make the two states be timed bisimulation
equivalent. For example, let us consider the following two processes, P and Q). The process



P may execute the action a between x + 5 and y seconds from now, or execute the action
b between y and x + 10 seconds from now. The process ) may execute the action a
between 10 and z seconds from now. In order to make P and @ bisimilar, the condition
“(z4+5=10)A(y = 2) A (y > =+ 10)” must hold (if (y > z + 10), then P cannot
execute the action b). On the other hand, the condition is also a sufficient condition to
make P and @ bisimilar. Such a condition is the mgb. In the proposed method, even if
P and @ are infinite processes, if the corresponding A-TSLTS has finite states and finite
variables, we can obtain the mgb for any two states. Once we obtain the mgh, we can
verify whether the two states are timed bisimulation equivalent w.r.t. specified parameter
values by checking whether the values satisfy the mgb.

The proposed algorithm takes an A-TSLTS and its state-pair as an input, and it outputs
the mgb for the state-pair. We also show that the algorithm can easily be extended to verify
untimed bisimulation equivalence(Nakata et al. 1994), which is a bisimulation equivalence
where we allow the executed time of actions does not have to be precisely equal. The notion
of untimed bisimulation equivalence is essentially identical to time abstracted bisimulation
in (Larsen and Wang 1993; Alur et al. 1994).

The method can also apply to structural process description languages such as CCS or
LOTOS. In this case, we have only to provide a transformation from an expression of the
language to an A-TSLTS. In this paper, we will apply the method to LOTOS/T, a timed
extension of LOTOS defined in (Nakata et al. 1994).

This paper is organized as follows. In Section 2, the model of timed processes, A-TSLTS,
is defined. In Section 3, timed bisimulation equivalence of states in an A-TSLTS is defined.
In Section 4, an algorithm is presented to construct the mgb for two states in an A-TSLTS
w.r.t. timed bisimulation equivalence. In Section 5, untimed bisimulation equivalence of
states in an A-TSLTS is defined and an extension of the algorithm to verify untimed
bisimulation equivalence is presented. In Section 6, we apply our verification method to
the verification of LOTOS/T expressions. Finally, in Section 7, we conclude this paper.

2 TSLTS MODEL

A TSLTS is an LTS where each state s has a set of parameter variables DVar(s), and

o . . . o a,P o
each transition is either an action transition, represented as s — s’ or a delay transition

e(d),P . . . . . .
represented as s —> s'. a is an action name. d is a variable which stands for a duration.

Each P is a transition condition. The transition condition P is a formula of a (decidable)

Ist-order arithmetics on any (dense or discrete) time domain. P may contain any variables

: : . . d),P
in DVar(s) (s is a source state of the transition). In a delay transition s DF o , P may

also contain the variable d.

Intuitively, a delay transition s e(d—)’l; s' represents a state-transition only by delay. Its
duration is d and d must satisfy P under a current assignment for other parameter vari-
ables in DVar(s). The delay is possible up to the maximum value of d’s which satisfy P.
The delay over the maximum value of d is not allowed (time-deadlock(Moller and Tofts
1990),urgency (Bolognesi and Lucidi 1992)). When the transition is completed, the actual
duration (which satisfies P) is assigned to the variable d. DV ar(s') may contain the vari-

able d. So the value of d may be used in conditions of any succeeding transitions. An action
o, a,P . .
transition s — s’ represents an execution of an action a when P holds under a current
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assignment for parameter variables in DV ar(s). The execution of an action is considered
instantaneous, since we take interleaving semantics to express concurrency(Wang 1991;
Chen 1992). The state s may have multiple outgoing action transitions. In that case, one
of executable action transitions is nondeterministically chosen and then executed.

Example 1 We show an example of a TSLTS in Fig. 1. In Fig. 1, for convenience, the
names si, So, . . . are assigned for states and %1, ,, ... for transitions. The set associated to
each state s; represents DVar(s;). a[P] (or e(d)[P]) associated to each transition repre-
sents an action name a (or a delay with its duration of d, respectively) with a transition
condition P. When a value v is assigned to the parameter variable x at state s;, the
TSLTS in Fig. 1 behaves as follows. First, x = v units of time is elapsed (the value v is
assigned to dy;,) and then the action a is executed. Next, before 4 units of time elapse, the
action b or c is executed. The action b is executable when the duration is within 3 units of
time. The action c is also executable when the duration is more than or equal to 2 units
of time. In the case that c is executed, the TSLTS moves its state to s; and then repeats
the behaviour from the beginning. O

In order to make it easier to consider symbolic bisimulation, we restrict a TSLTS so that
its states fall into two categories of states, idle states and active states. Each idle state has
only a delay transition as an outgoing transition and the destination is an active state.
An active state has only action transitions as outgoing transitions and all the destinations
are idle states. We call this restricted TSLTS as an Alternating TSLTS (A-TSLTS). The
notion of A-TSLTS is inspired by (Hansson 1991).

In the rest of this paper, we assume that each TSLTS is an A-TSLTS, and it is
time-deterministic, i.e., every state has at most one outgoing delay transition. Time-
determinacy is a reasonable assumption when we consider processes of real-world. Many
other studies also assume time-determinacy(Moller and Tofts 1990; Wang 1991; Chen
1992).

Example 2 The TSLTS of Example 1 is an A-TSLTS because a division into {si, s3, s5}
(idle states) and {ss, s4} (active states) is possible. It is also time-deterministic.

3 TIMED BISIMULATION EQUIVALENCE

In this section, we define timed bisimulation equivalence for A-TSLTS. Before all, we need
some preliminary definitions.

Definition 1 ® We denote assignments of values to variables by p, o/, .. ..
® For a predicate P and an assignment p, we denote p = P iff P is true under an
assignment p.



® We denote p[z = e] is the same assignment as p except that the value of the expression
e is assigned to the variable z.

® We denote a tuple (s, p) of a state s in a TSLTS and an assignment p, as p(s). p(s)
stands for a state with some parameter values(not variables) associated to s. We call
it an instance of s w.r.t. p. O

The actual moves of a TSLTS are formally defined by considering the corresponding
(traditional) LTS, whose states are all instances of TSLTS states, and whose transitions
are labelled by either an action name or a concrete value of a duration.

Definition 2 For a TSLTS M, its corresponding semantic LTS M’ is defined as follows:

® The set of states in M’ are the set of all instances of M, i.e. {p(s)|p:an assignment, s:a
state of M}.

® Each transition in M’ is labelled by either an action name a of M, or any non-negative
time value ?.

® Tor each transition s 25 s’ in M and each assighment p, M’ has a transition p(s) —
o(s) iff p = P.

® For each transition s eﬂf s'in M, each assignment p, and any non-negative time value
t, M' has a transition p(s) SN pld =t|(s") iff p[d =t] = Id'[d < d'AP{d'/d}] (P{d'/d}
denotes P whose any occurrence of a free variable d is replaced by d'). Moreover, for any
non-negative time value t' which satisfies t' < ¢, M’ has a transition p[d = t'|(s) ot
pld = t](s"). O

Remark: The predicate “3d'[d < d' A P{d'/d}|” means that P holds at some duration d’'
where d < d'. In such a case, a delay of the duration d (as well as d') is allowed.

The method for modeling real-time processes by considering a delay transition with an
associated time value is similar to (Wang 1991; Holmer et al. 1991; Chen 1992).

For a given TSLTS, timed bisimulation equivalence of its two instances of states is
defined by considering a traditional bisimulation equivalence on its semantic LTS.

Definition 3 A timed bisimulation relation R is a binary relation on a set of instances
of TSLTS states {p(s)|s:a TSLTS state, p:an assignment}, which satisfies the following
conditions:

® R is a symmetric relation, and
® if (p;(s;), pi(s;)) € R, then all of the following conditions hold:

!

— For any time value ¢, if p;(s;) — pl(s}), then there exist some s

¢
pi(si) — pj(s5) and (pi(s7), pj(s5)) € R,

— For any action name q in the TSLTS, if p;(s;) — pj(s}), then there exist some s
and p; such that p;(s;) — pj(s;) and (pj(s}), pj(s})) € R.

and pf; such that

If there exists some timed bisimulation equivalence R such that (p;(s;), pj(s;)) € R, the
two instances p;(s;) and p;(s;) are called timed bisimulation equivalent, which is denoted
by pi(si) ~¢ p;(s;). Especially, if p(s;) ~; p(s;), then the two states s; and s; are called
timed bistmulation equivalent w.r.t. an assignment p. O



mgb(3i7 SJ) déf mgb1(3Z7 85, @)

mgbl(s;, sj, I/V)déf if (s4,5;) € W then return true
else if (s;,s;) is a pair of idle states, then return match_delay(s;, s;, W)
else if (s;,s;) is a pair of active states, then return match_action(s;, sj, W)
else return false

. d;),Pi d;),P;
match_delay (s;,sj, W) def i 8 eldi)y sy and s; e(’—)> sy

then let {d = new(DVar(s;) UDVar(s;)),
My j = mgbl(sy[d; — d, sj[dj — d], W U{(si,5)})} in
return Vd[P{d/d;} = [Pj{d/d;} N My y]|\Vd[P;{d/d;} = [Pi{d/di} A My j]]
e(d;),P; e(d;),P;
else if s; /= and s; 7L> ’ then return true else return false
match_action(s;, sj, W) 4 return Naec act{imatch_actionl(a, s;, s, W)}
match_actionl(a, s;, s;, W) 4 et {K = {k|s; a.P sip by L= {l]s; i} si }s
Mk:,l = mgb]—(s’bka Sjr9 wu {(sia 3])})} in
return Apeg{Pr = Vier{Qi A Mt} A Nier{Q1 = Viex{Pe A Mg, }}
where, for a set V of variables, new (V') denotes a function which returns an appropriate new
variable = such that z € V.

Figure 2 Algorithm to compute mgb(s;, s;).
4 VERIFICATION OF TIMED BISIMULATION EQUIVALENCE

For any state-pair (s;,s;) in an A-TSLTS, we call the weakest condition P such that if
p = P then s; and s; are timed bisimulation equivalent w.r.t. p, as the mgb of (s;, s;). If we
can obtain the mgb P for any state-pair (s;, s;), then the verification of timed bisimulation
equivalence of p(s;) and p(s;) is reduced to the verification to check whether p = P.

To keep track of the correspondences between variables during matching, it is useful to
replace some different variables of two states with some common name, standing for their
matched common value which equates the two states. In order to do so, we consider the
mgb for a pair of terms instead of states in A-TSLTS. This is similar to (Hennessy and
Lin 1995). A term is a tuple of a state and a substitution. A substitution is a mapping
from variables to variables. We denote a term (s, o) as so, where s is a state of A-TSLTS
and o is a substitution. We also denote a substitution which maps the variable d to d’ as
[d — d']. If o is an identity substitution, we abbreviate so to s and we do not distinguish
between the term so and the state s. Note that if the set of variables is a finite set, then
the set of all possible substitutions are finite. A transition between terms is defined as

o DR (so i s'o) iff s DL (s b respectively) in an A-TSLTS. We
denote the mgb of a term-pair (s;,s;) as mgb(s;,s;). If the A-TSLTS has only finite
states and finite variables, mgb(s;, s;) is obtained by the algorithm in Fig. 2.

The function mgb(s;, s;) takes two arguments s; and s;, any two states in an A-TSLTS,
and returns the mgb for (s;, s;). The function mgbl(s;, s;, W) takes three arguments s;, s;
and a set W of state-pairs. W is a set of already visited pairs, introduced to make sure the
algorithm eventually terminates. For (s;,s;) € W, it simply returns ¢true. Otherwise, it
returns match_delay(s;, sj, W) if (s;, s;) is a pair of idle states, or match_action(s;, sj, W)
if (si, sj) is a pair of active states. match_delay(s;, sj, W) (match_action(s;,s;, W)) is a
function which recursively computes the mgb for (s;,s;), where we assume (s;,s;) is a
pair of idle (active, respectively) states.



The function match_delay(s;, s;, W) computes the mgb for two idle states s; and s; as
follows. Firstly, from the definition of A-TSLTS and time-determinacy, delay transitions
from s; and s; correspond to one-to-one, including duration values. So we unifies the delay
variables in the two transitions into one. We introduce a new variable d representing the
common duration of delay. We choose d = new(DVar(s;) U DVar(s;)). W.r.t. a given
assignment p, if s; and s; are timed bisimulation equivalent, and if any delay transition
of duration v from s; is possible, then there must exist a delay transition of the same
duration v from s;, and the destinations s; and s; must be timed bisimulation equivalent

w.r.t. p[d = v]. For example, if s; (i) di<e s; and s; () <y sj, then Vd[d <z = [d < y A

(the mgb for (s}[d; — d], sj[d; — d]))] holds. Here, in general, the mgb for (s{, s’;) contains
the variables d; or d;. To preserve the information that d; and d; are equal, we consider the
mgb for (sj[d; — d], s’[d; — d]) instead. In general, the mgb for (sj[d; — d], si[d; — d])
contains the variable d as a free variable. It represents the mgb for (s, s}) in the case
d; = d; = d is assumed.

The above discussions must also be applied when s; and s; are exchanged. Thus, p must
satisfy the following condition if s; and s; are timed bisimulation equivalent w.r.t. p.

Vd[P{d/d:} = [Pd/d;} A My g) AVAIP{d/d;} = [P{d/di} A M. 1)

where My j = mgb(si[d; — d], s%[d; — d]). On the other hand, if s; and s; are not timed
bisimulation equivalent w.r.t. p, then, for example, a delay transition of some duration v’
is possible from s;, which is impossible on s;, or otherwise s; and s} are not equivalent
w.r.t. pl[d = v"] for some value v”. In any case, Expression (1) does not hold. There-
fore, Expression (1) is the weakest condition such that p must satisfy in order to make
p(s;) and p(s;) be timed bisimulation equivalent, i.e., the mgb for (s;,s;). The function
match_delay(s;, s;, W) computes My jy = mgbl(s;[d; — d],sj[d; — d],{(si,s;)}) recur-
sively (where (s;, s;) is treated as a already visited pair) and then returns Expression (1)
as the mgb for (s;, s;).

The function match_action(s;, s;, W) returns the mgb for active states s; and s;, which
is computed as follows. Firstly, if s; and s; are timed bisimulation equivalent w.r.t. an
assignment p, for any action a in a set Act of all actions, the following condition holds.

For any possible transition s; KLY s;, whose transition condition Py satisfies p = Py, if

the action a is executable, there must exist some transition s; @9 s, whose transition
condition @, also satisfies p = @, and the destinations s;, and s; must be timed bisim-
ulation equivalent w.r.t. p (p must satisfy the mgb for (s;,,s;)). The above discussions

must be true when s; and s; are exchanged. Therefore, when we let K = {k|s; LY Sip b
L= {Z‘S] ﬁg Sjl} and Mk,l = mgb(s,—k, Sjl)’ p must satisfy

ANA{B: = V{QAM3IA N{Qu = V {B: A My}l (2)

keK leL leL keK

A conjunction of Expression (2) over all actions a € Act is a condition such that p must
satisfy if s; and s; are timed bisimulation equivalent for any action w.r.t. p. On the other
hand, if p does not make s; and s; be timed bisimulation equivalent, there must exist some

. a' P . . a’,Q .
action a’ such that, for example, s; = s;, is executable and for any [, either s; == s;, is

not executable or s;, and s;, are not timed bisimulation equivalent w.r.t. p. In any case,
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Figure 3 Example of A-TSLTS

Expression (2) does not hold. Therefore, a conjunction of Expression (2) over all actions
a € Act is the weakest condition that p must satisfy to make s; and s; be timed bisimula-
tion equivalent w.r.t. p, i.e. the mgb for (s;, s;). The function match_actionl(a, s;, sj, W)
computes each M;, j, recursively (with (s;,s;) as an already visited pair), and then re-
turns Expression (2). The function match_action(s;, s;, W) composes a conjunction of
match_actionl(a, s;, sj, W) over all a € Act and returns it as the mgb for (s;, s;).

The algorithm mgb(s;, s;) terminates if the considered A-TSLTS has only a finite num-
ber of states and variables (thus it has only a finite number of pair of terms).

Formally, we obtain the correctness result by the following theorem.

Theorem 1 [Soundness| If p = mgb(s;, s;), then p(s;) ~; p(s;). O
Theorem 2 [Completeness| If p(s;) ~; p(s;), then p = mgb(s;, s;)- O

The formal proof of the correctness for this algorithm is similar to Appendix B. in (Hen-
nessy and Lin 1995). We omit the detail due to the space restriction.

Example 3 For a pair (s, s3) of the A-TSLTS in Fig. 3, mgb(s;, s3) is obtained as follows.

mgb(sl, 83) = \V/dl[dl =T = [dl =yA M24]] A le[dl =Yy = [dl =xzA M24]]

where,
Myy = mgb(saldy, — di], saldy, — di], {(s1,53)})
= [di<3=[di <2AM3V (di <1V2<d <3)AMs||A
[di <2=[dy <3AMp||A[(di <1V2<d; <3)=[di <3N M,
Mz = mgbl(sy, ss,{(s1,53), (s2,84)}),
)

Mis = mgbl(si,ss,{(s1,53), (s2,51)}) = false.
Since mgbl(sy, s3, {(s1, s3), (52, 54)}) = true, the mgb after simplification is
mgb(s1,s3) =[x =y|A[1 <z <2 O

5 UNTIMED BISIMULATION EQUIVALENCE AND ITS
VERIFICATION

Definition 4 An untimed bisimulation relation R is a binary relation on a set of instances
of TSLTS states {p(s)|s:a TSLTS state, p:an assignment}, which satisfies the following
conditions:

® R is a symmetric relation, and
® if (p;(s;), pi(s;)) € R, then all of the following conditions hold:
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Figure 4 Example of A-TSLTS where s; and s3 are not untimed bisimulation equivalent.

— For any time value t, if p;(s;) — p}(s!), then there exist some s}, p; and some time
value ¢’ such that p;(s;) LN p;(s5) and (p;(s7), pi(s;)) € R,

— For any action name a in the TSLTS, if p;(s;) == pl(s}), then there exist some s/

J
and pj such that p;(s;) == pj(s}) and (pj(s}), pj(s})) € R. Here el h, o, b,

J
for some time values ¢; and ts.

If there exists some untimed bisimulation equivalence R such that (p;(s;), p;(s;)) € R,
the two instances p;(s;) and p;(s;) are called untimed bisimulation equivalent, which is
denoted by p;(s;) ~u pj(s;)- O

The result of the previous section can be extended to untimed bisimulation equivalence.
To do this, we have only to modify functions match_delay() and match_action() to make
durations not necessarily be equal when we match delay transitions.

The mgb of idle states is easily expressed by the following formula:

Vd[Pi{d/d;} = 3d'[P;{d'/d;} N My ]| \Vd'[P;{d'/d;} = Fd[P{d/d;} A My ;]|
where M; ;s is the mgb of the next pair of active states.

On the other hand, in order to consider the mgh of the active states for untimed
bisimulation equivalence, we must solve the following problem. For the timed bisimulation
equivalence, we have only to consider the executable actions at the specified time instant
(for example, the action a is executable at time 2, the action b is executable at time 3,.. . ).
However, it is not the case for the untimed bisimulation equivalence. Consider the two
A-TSLTSs in Fig. 4. If we consider the executability of actions at time d only, the states
s1 and sz should be untimed equivalent, because for duration d; = 2 after which only a
is executable, there exists a duration d, = 3 after which only «a is also executable, and
vice versa. However, for the above example, s; and s3 are not untimed equivalent in the
sense of Definition 4, because after the delay of 2.5 units of time, s; is in the state such
that only b is executable (after more 0.5 units of time elapsed), whereas s; is in the state
such that only a is executable. So, instead of the executability at the given time instant,
we consider the executability at some time after the given time instant. For the above
example, when the system is at state s; and 2 units of time have elapsed, a is executable
now and b is executable after more 3 —2 = 1 unit of time elapses. In this case, s; is in the
state such that both a and b are executable at some time in the future (see Fig. 5-(b)). In
general, when d units of time have elapsed and a is executable after more d' — d units of
time elapse, i.e., d’ satisfies both d < d’' and the transition condition of a, a is executable
at some time in the future.

Because of the reasons above, we must loose the executability condition of actions in
order to define the mgb of the untimed bisimulation equivalence. So we define that for a
given duration d, an action is executable if and only if there exists some duration d’ such



pldr = 0](s1)

pld1 = 2](s1)

di = 3](s1)
b

(a)

Figure 5 Illustration of (a) timed semantics and (b) untimed semantics of Fig. 4-(A).

that d < d' and d’ satisfies the transition condition of the action. Note that d’, as well
as d, must also satisfy the transition condition of the delay transition. Formally, let P
denote the transition condition of an action a. Then we say that the action a is untimedly
ezecutable after duration d, if and only if 3d'[d < d' A P{d'/d}]. We refer to the condition
as the untimed transition condition. Since we frequently consider the predicate of the
form 3d'[d < d' A P{d'/d}] w.r.t. P and the variable d, we abbreviate it as F,P. Note
that if the transition condition of the most recent delay transition is D, then d ranges
over the solutions of D. However, F4P may have a solution d’ which does not satisfy

D, which is incorrect. (Consider the untimed transition condition of b in the sequence

d),d<2 ,d= . . oy, oy
S0 (a5 s 205 S2.) In this case, the untimed transition condition becomes F4{P A D}.

Using the untimed transition conditions, the mgb of the active states (s;, s;) for untimed
case is given as follows. Firstly, if s; and s; are untimed bisimulation equivalent w.r.t. an

assignment p, for any action a in a set Act of all actions, the following condition holds.

.. di),D;
Suppose that the most recent delay transitions of s; and s; are s;, e(—)> s; for some s;,,

d;),D; ) .
and s, ()Di s; for some s;,, respectively. Note that the delay variable d; (d;) ranges
over solutions of the predicate D; (D;, respectively). For any possible transition s; ol Siy
whose untimed transition condition Fy [Py A D;] satisfies p = Fy,[Pr A D, if the action

a is untimedly executable, there must exist some transition s; 29 s, whose untimed
transition condition Fy, [Q;AD;] also satisfies p |= Fy,[Q;AD;] and the destinations s;, and
sj, must be untimed bisimulation equivalent w.r.t. p[d; — d}, d; — d}] (p[d; — d}, d; — d’]
must satisfy the mgb for (s;,, s;,)). Here p[d; — d}, d; — dj] denotes the same assignment
as p except the names of variables d; and d; are replaced with d; and d;, respectively.
Note that since it is assumed that a is untimedly executed, the executed time of a at the
state s; is not d; but dj. So the destinations s;, and s;, can be reached with the values of
not d; and d; but d; and dg-. That is why s;, and s;, must be untimed equivalent w.r.t.
pldi — di,d; — dj]. The above discussions must be true when s; and s; are exchanged.
Therefore, similar to the timed case, we obtain the mgb of active states s; and s; for
untimed bisimulation equivalence as:

NeexAFa: [P N Di = e, A Fa; [Qu A Dy A My ] }]}
A NeeAFa4;[Qu A Dy = Vpex A Fa; [P A Di A My, }]}
e(d;),D;

’P b
where, K = {k|s; 25 s;.}, L = {l|s; L s}, My = mgb(s;,,s;), Sie, — s; for some
e(d;),D;
Siy, and sj, ——" s; for some sj;.

The functions match_delay() and match_action() can be modified properly for untimed
bisimulation equivalence according to the mgb obtained above. Although, we omit the
detailed definition for lack of space.



Example 4 Consider the two A-TSLTSs in Fig 4. The mgb of (s, s3) for the untimed

bisimulation equivalence can be obtained as follows:
mgb(sl, 83) == le[dl S 3= Eldg[dg S 3 A M24]] A VdQ[dQ S 3= Eldl[dl S 3 A M24]],

where

My, = 3di[dy < d\Ad, <3N =2= 3dy[dy < dyAdy < 3Ady=3A My
Ady[dy < dy ANdy <3ANdy=3= 3d|[d; < d} ANd] <3Ad} =2A My
A [dy < d\ANdy <3N, =3 = Ady[dy < dy Ady < 3Ady=2A My
A3dyldy < dy Ady < 3Ady=2= 3d)[dy < d\ Ad, <3Ad, =3 A My,

My = true.

After simplifying the above formula, we obtain My, = (d; < 2Ady < 2)V(dy > 3Ady > 3).
So we get mgb(s1, s3) = false, that is, s; and s3 are not untimed bisimulation equivalent.
O

6 AN APPLICATION TO A TIMED LOTOS

The verification method proposed so far should also apply for any structural process
description languages, if we could give a correctness-preserving transformation from the
expression of the language into A-TSLTS. In this section, we apply our method for the
language LOTOS/T, a formal description language of timed processes proposed in (Nakata
et al. 1994).

6.1 LOTOS/T

For readers’ convenience, here we give a brief summary of the language LOTOS/T.

Definition 5 Behaviour expressions of LOTOS/T is the same as LOTOS, except it
has a timed action prefix a[P(t,Z)]; B to describe timing constraint of an action. Here,
P(t, ) stands for a Presburger formula(Hopcroft and Ullman 1979), that is, a first order
logic formula whose atoms are integer linear inequalities, which has a free variable ¢t and

. _ def . .-

other free variables z;. Here = (1,9, ..., ;) for some j. Intuitively, ¢ represents the
. . . ) _ def

current time, e; stands for an integer linear expression and & = (ei, eq, ..., e;) for some

k, where each e; is an integer linear expression. a

In LOTOS/T, time constraints of actions are described in a subclass of Presburger for-
mulas, more specifically, logical combinations of the atoms each of which takes the form
of either ¢, <t,t < e, or x =t . Here, ¢ (e,) is an integer linear expression representing
the lower bound (upper bound, respectively) of the time an action is executable. The
atomic formula x = ¢t means that the action’s executed time is assigned to the variable
x. For simplicity, we use an abbreviation ¢; < t < e, for ¢ <t At < e,. Other symbols
of inequality such as <,>,etc. may also be used. In our semantics, an upper bound e,
specified as a time constraint of an action means that the action must be executed no
later than e,. In this case, we say that urgency of the action at time e, is specified. Note
that in our language, executability and urgency of each action at each given time t are
decidable(Nakata et al. 1994).

Example 5 B=a[2<t<3Azo=1t];b[t=1z0+3];c[t =z + 4];stop



The behaviour expression B represents the following behaviour. The action ¢ must be
executed between time 2 and 3, and the execution time of « is assigned to the variable
xg- Then b must be executed exactly 3 units of time after the execution of a. And then ¢
must be executed exactly 4 units of time after a. O

6.2 Mapping LOTOS/T into A-TSLTS

In (Nakata et al. 1994), a structured operational semantics of LOTOS/T expressions on
a discrete (integer) time domain is defined. Our intention is to define another structured
operational semantics of LOTOS/T which maps a LOTOS/T expression to an A-TSLTS.
In the latter semantics, it does not matter which time domain is considered. To achieve
this, firstly we define each state of the obtained A-TSLTS corresponds to an expression
of LOTOS/T with a mark 1’ or ‘a’. The mark indicates which category of states (idle or
active) the state itself belongs to (Note that for one behaviour expression B, both of two
states (B, 1) and (B, a) are introduced). Secondly, for each idle state (B,i), where B is a
LOTOS/T expression, we define an delay transition starting with (B, 7) by inference rules.
Finally, for each active state (B, a), we define an action transition starting with (B, a), and
an entire inference system which derives A-TSLTSs from LOTOS/T expressions is given.
Please note that we simply define DVar((B,1)) (or DVar((B,a))) as DVar(B), where
DV ar(B) represents the set of all defined (free) variables in B. Informally, a defined vari-
able means the variable whose value has been already determined by previous execution
of actions. For example, w.r.t. the behaviour expression a|z = t];b[t < z + 3]; stop, the
variable z in the subexpression b[t < z+3]; stop is a defined variable because the executed
time of a has been assigned to z. On the other hand, z in a[z = t];b[t < z+ 3]; stop is not
a defined variable, since the value of the variable = has not been assigned at this moment.
The formal definition of defined variables appears in (Nakata et al. 1994). In the rest of
the paper, we assume DVar(B) is a set of defined variables of the subexpression B w.r.t.
the entire behaviour expression. Since it is always obvious which expression we assume as
the entire behaviour expression (we always assume it is the behaviour expression of the
initial state), we simply refer to the defined variables of the expression B as DVar(B).

Delay Transitions of LOTOS/T

Basically, a delay transition from an idle state (B,1) is defined as follows.

® A new delay variable d, which is not used by the behaviour expression B, is introduced
to represent the duration of the delay transition.

® The transition condition is defined so that it exactly expresses the possible range of
delay of the behaviour expression B.

® The destination state (B’ a) of the transition is defined so that it represents the be-
haviour after d units of time has elapsed. The behaviour expression B’ may contain the
variable d because the following behaviour might depend on how much time elapsed
on this delay transition.

For example, consider a behaviour expression B = a[2 <t < 3Azy = t]; b[t = zo+3]; [t =
xo + 4]; stop. From the definition of LOTOS/T, up to 3 units of time of delay are possible
from the idle state (B,7). A delay variable d is introduced to represent the duration. Then,
the transition condition of the outgoing delay transition of (B,?) is defined as ‘d < 3.



To consider the state where d units of time have elapsed, every occurrence of ¢ in B is
replaced with (t+4 d). This is the extension of (Nakata et al. 1994). So, the delay transition
from (B, 1) can be defined as
(B,i) 25 (@2< (t+d) <3Nz = (t+d)];b[(t +d) = zo + 3];

c[(t + d) = zo + 4]; stop, a).

The condition such as d < 3 is easily obtained from [2 < ¢ < 3 A 2y = t]the transition
condition of a. In this case, 3d'Ixg[d < d' A [2 < d' < 3 A xy = d']] is equivalent to
d < 3. In general, if B = a[P(t,z)]; B, then the delay transition from (B, ) is defined as

(B,) T (B{(t+ 4) /1), 0).

Action Transitions of LOTOS/T

From the previous section, each active state (B,a), which is reachable from any idle
state by a delay transition, represent the behaviour where d units of time have elapsed.
So, similar to (Nakata et al. 1994), the transition condition is defined as the condition
whether the first action is executable at time 0. The transition condition may contain
some undefined variable to which the executed time of the action will be assigned.

Since the action is considered instantaneous, we do not have to consider delay in action
transition. So the destination behaviour is obtained similarly to LOTOS.

For example, for the behaviour expression

B'=a2<(t+d) <3Az=(t+d)];b[(t +d) =z + 3];¢[(t + d) = z + 4]; stop,

the action transition

a,2<(0+d)<3Az=(0+d)
) — (

(B",a bi(t +d) =z + 3];c[(t + d) = = + 4]; stop, 7)

is defined. Note that since [2 < (0 + d) < 3 Az = (0 4 d)] holds after a is executed, the
value of z is equal to the duration d in the succeeding behaviour.

When a process is defined recursively such as P(z) :=alt <z +3Ay=t];b[t <yAz =
t]; P(z), the states (P(z),4) and (P(z),1) are essentially the same state if z = z. However,
because the names of the variables are different, the two states are treated differently in
the symbolic semantics. To unify the two states above, we replace these variables with
the minimum one of all possible new variables (we assume some total order is defined on
variables). This is similar to (Jonsson and Parrow 1989).

For example, assume that the set of variables is {z,y, z,d,d’'} and that a total order
of the variables is defined as z < y < z < d < d'. For the above example P(z), the
corresponding A-TSLTS is obtained as follows.

(P(2),3) Y5 (a(t+ d) <z +3Ay =+ bt +d) < yAz=(t+d)] P(2),a)

(aft+d) <z+3Ay=({t+d));b[(t+d) <yAz=(t+d)];P(z2),a)
HOTDZTNTOD Gt d) <y Az = (¢ + d)]; P(2),4)

The undefined variable y is replaced with y itself. Since the defined variable x is also
contained in the condition, the minimum new variable is y.

Bt+d) <yAz=(t+d):P@y),id) Y Gl rdrd)<yAz=(t+d+d);



P(z),a)
(bl(t+d+d) SyAz=(t+d+d)]; P(z),a) "I (p(g) )
The undefined variable z is replaced with the minimum new variable x. Because of the
replacement, the obtained A-TSLTS has a loop, which corresponds to the recursion.

Nondeterministic Choice and Parallel Execution

For all compositional operators of LOTOS/T, delay and action transitions are also defined.
Because of the space limitations, we only describe how transitions of choice and parallel
constructs are defined. The other cases are similar.

For choice constructs Bi[|Bs, time passing is allowed if and only if it is allowed by
either By or By (non-persistent choice). This means that time may elapse until reaching
the deadline of the first action of either By or By. * So, in general, the delay transition
can be defined as

.\ e(d),PLVP
(Bi[1Ba, i) 5 (B (1B, a),

if (By,1) palic (B}, a) and (B, 1) AL (B), a). The action transitions are defined similar
to LOTOS.
For example, if B; = aft < 2];stop and B, = b[t < 3]; stop, then

(Bi1Ba, i) “PEB (a[(t + d) < 2); stop[Jb[(t + d) < 3]; stop, a),

(al(t + d) < 2J; stop[]b[(t + d) < 3];stop, a) ““ L= (stop, i),

b,(0+d)<3
) (

(a[(t + d) < 2];stopl[]b[(t + d) < 3];stop, a stop, 7).

For parallel constructs B |[G]| Bz, time of both B; and By synchronizes each other in
our semantics. In this case, the delay transition from (Bi|[G]|Bs, ) is defined as

. 6(d),P1/\P2
(B1|[G]| B2, 1) =" (Bi|[G]| By, a),

where (B, 1) gilie (B},a) and (Bs,1) AL (BY,a). The case of synchronized action
transition (the case where the action a is in G) is similar. That is, the transition condition
is a logical product of the transition condition of each component. The case of interleaving
action transition is similar to LOTOS.

7 CONCLUSIONS

In this paper, we proposed a model A-TSLTS which can describe timed processes, and
a verification method of timed verification equivalence for an A-TSLTS using a similar
method as (Hennessy and Lin 1995). We also presented how the result can be applied to
structural process description languages such as LOTOS/T.

In contrast to other proposals for timed processes, our model allows arbitrary decidable
1st-order logic on any time domain for describing time constraints. In the model we can

*Note that if we use persistent choice semantics instead, we have only to modify the guard predicate of
the delay transition from P, V P, to P; A P (i.e., time passing is allowed as long as it is allowed both B
and Bj).



describe time constraints in a very flexible way and still we can verify timed bisimulation
equivalence whose cost is independent of the absolute value of constants used in the
time constraints. Although we do not handle value-passing in this paper, our model can
easily be extended to the model with both time and value-passing by extending action
transitions to have input/output values.

In our method, the verification of equivalence for LOTOS/T expressions is decidable be-
cause of the decidability of Presburger Arithmetics. Our research group has implemented
an efficient decision procedure of Presburger Arithmetics(Kitamichi et al. 1994).

Our model has an expressive power of describing timing constraints by 1lst-order for-
mulas which contains some quantifiers. This might be too powerful for some applications.
However, in (Nakata et al. 1995), we have proposed a protocol synthesis method for
LOTOS/T service specifications. In the method, derived protocol entity specifications
generally contains existential quantifiers to express complicated timing dependencies a-
mong actions executed at different nodes. In such an application, our method becomes
useful.

Our method is only applicable to the finite state A-TSLTS. For proving equivalence
of non-finite-state timed processes, some axiomatic approaches such as (Fokkink and K-
lusener 1995) have been proposed. However, since untimed bisimulation equivalence is not
congruence and the weakest congruence stronger than untimed bisimulation equivalence
is equivalent to timed bisimulation equivalence(Larsen and Wang 1993; Alur et al. 1994),
an axiomatic approach for proving untimed bisimulation equivalence is unlikely. In this
case, our method is still useful.

The question whether (time deterministic) A-TSLTSs are as expressive as (time deter-
ministic) TSLTSs (modulo timed bisimulation equivalence) is left open.

The future works are to extend the result to the verification of timed weak bisimulation
equivalence (internal actions are considered), and to implement the algorithm and evaluate
the cost of the verification for practically large processes.
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