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Abstract
In designing bus based systems with parallel and pipelined architecture, it is

important to derive a real time budget (a specified execution time limit) for each
task of a bus based system while satisfying given end-to-end real-time constraints
of the entire system such as throughput and latency constraints. In this paper, we
define a bus scenario representing a set of possible execution sequences of tasks
and bus transfers executed in a bus based system. Then we propose a method for
deriving real time budgets of all the tasks running in parallel and pipelined fashion
from the pair of a system configuration (such as bus topology) and a bus scenario.
In deriving such real time budgets, we consider computational complexity of each
task, the amount of bus transfers and bus arbitration policies (e.g. fixed priority or
time divided round robin based arbitration). We show that the proposed method is
effective for designing several bus based systems such as MPEG decoders.

Keywords: Bus based systems, Real-time systems, Pipelined processing, Multimedia
processing, Cycle budgeting

1 INTRODUCTION
High performance parallel and pipelined architecture has been used in implementa-
tion of several types of image and sound processing with tight real time constraints
in System-on-a-Chip (SoC) design [1, 2, 3, 11]. In a system with pipelined architec-
ture, each task periodically receives input data from its predecessor tasks, performs
its computation and sends output data to its successor tasks. The tasks that have no
predecessors read the external inputs, and those that have no successors generate the
external outputs. In designing such a system, bus based communication architecture is
very popular to handle on-chip communications because it is simple to design and take
up small areas. Here, we call such architectural systems asmodule-level-pipelined bus
based systems.

In general, unified single memory architecture may make the performance of the
entire system worse due to higher congestion in the memory access [2, 3]. Therefore,
in order to design a highly efficient module-level-pipelined bus based system satisfying
given real-time constraints, we must consider execution time of each task executed on
each module composing the bus based system and bus data transfer time between those

∗This work is partially supported by Renesas Technology, Corp.
§Presently with Canon, Inc.
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modules, where each module may execute multiple tasks (by mode switching, etc.) but
at most one task at a time. Designers estimate several candidates of real time budgets
very often from their experience, or by creating simulation models annotated with the
detailed information based on experience. However, such an effort takes much time.
As far as we know, there is no research result on the automatic derivation of a real time
budget for each task of a module-level-pipelined bus based system from the top level
real-time constraints.

As researches concerning with real time budgeting, [4, 5] have proposed an al-
gorithm to derive a deadline and a period for each periodic software task on a single
CPU where communication among tasks is executed asynchronously via buffers and
is scheduled in a preemptive fashion. The derived deadline and period satisfy a real
time constraint given as a deadline. Since the targets of [4, 5] are concurrent systems
with asynchronous communication between periodic tasks through buffers and they
restrict the communication model such that only one task can write to each commu-
nication buffer, we cannot apply their methods directly to bus based systems with bus
arbitration.

In this paper, we propose a real time budgeting method for each task of a given
module-level-pipelined bus based system where the input arrival rate is fixed and
throughput and latency constraints are given. Our target concurrent system is a module-
level-pipelined bus based system composed of several modules communicating via
buses, where as in the image and/or sound processing system, the target bus based
system satisfies the following conditions: 1) the input arrival rate to the bus based sys-
tem is fixed, 2) each input data goes through the sequence of data manipulation by
modules, memories, and data transfers among modules and memories in the pipelined
fashion to the outputs (thus, several data can be concurrently processed by the multiple
modules), 3) a data transfer between modules is always performed after completion
of a module, 4) each bus based or direct module communication always requires data
transfer between modules, and 5) in every direct module communication, the sender
blocks when its receiver is busy.

We employ a directed graph representation (called abus scenario) to express pos-
sible execution sequences of a module-level-pipelined bus based system with a real
time constraint. The bus scenario consists of nodes representing tasks, arcs represent-
ing data transfer between tasks, and tokens on the nodes and/or arcs representing data.
All nodes/arcs have information on time passages representing task execution time/data
transfer time, respectively. The tokens on the nodes and/or the arcs indicate which tasks
are in execution and/or data transfer. There may exist multiple tokens simultaneously
indicating concurrent execution caused by pipelined processing.

Our goal is to derive a set of execution time limits (called(real) time budgets) for
all tasks and bus transfers that satisfies the given latency and throughput constraints in
the presence of bus/resource conflicts. The proposed real time budgeting method con-
sists of two major phases: one is arough estimation phaseand the other is aconstraint
validation phase. First weroughly estimatea time budget for each bus transfer and
task, and then wevalidatewhether the estimated set of time budgets satisfy the given
end-to-end real-time constraints. If it does not, we consider that we must haveoveresti-
matedtime budgets. Thus, we reduce each task time budget based on certain heuristics
and validate again until the constraints are satisfied. Here, we do not reduce bus time
budgets and simply use the estimated worst case bus transfer time. Using the above
technique, we obtain acorrectbut possibly underestimatedset of time budgets for all
tasks/bus transfers. Then, we perform abinary searchbetween the least overestimated
and the most underestimated time budgets so that we can obtain a more relaxed and
correct set of time budgets.

In this paper, due to the space limitation, we only present a case study for a MPEG
decoder bus based system with an unified single memory [9] and show the derived real
time budget for each task.
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Figure 1: Inductive Definition of Bus Scenarios

2 MODELING MODULE-LEVEL-PIPELINED BUS
BASED SYSTEMS

We explain how to model a module-level-pipelined bus based system with a single
input stream and multiple output streams.

First, we define abus based system configuration(BC for short) which represents
a communication topology of modules of a bus based system.
Definition 1 A bus based system configuration (BC)is an undirected connected graph
GBC = GBC(V,E), where each node is either amodule nodeor a bus node, no two bus
nodes are directly connected, and there are at most one path between any two module
nodes. A module [bus] node is annotated with the module name [bus name, resp.].2

If two module nodes in a BC are directly connected, we consider that there is a direct
communication channel between the corresponding two modules. Otherwise, we con-
sider that two modules communicate via a directly connected bus node between them.
We write a bus node as a long horizontal/vertical line in the following figures. We omit
a bus name if it is apparent from the context.

Next, we define abus scenario(BS for short) which represents a set of possible
timed execution sequences of tasks executed on modules in the bus based system for
each input of the entire bus based system.
Definition 2 A bus scenario (BS)G = G(T,D) is a directed acyclic graph with an
unique root (rooted-DAG, for short) which is inductively defined as follows:
1. A rooted-DAG containing only one node and no arcs is a BS.
2. If G1, . . . ,Gn are BSs, then the constructed rooted-DAGs as in Fig. 1 are also BSs.
A node in a BS which has no outgoing arcs is called anoutput node. Otherwise, it is
called anordinary node. The unique root node of a BS is called theinput node. Each
node of a BS represents a task executed by a module in a bus based system, denoted
by ti ∈ T. Each taskti is annotated with a module name on which it is executed and a
fixed execution time of the task.1 The task on the input node takes external inputs of the
entire bus based system. The tasks on the output nodes emit outputs of the entire bus
based system to the external environment. Each directed arcdi j ∈ D between tasksti
andt j represents data dependencies. Eachdi j is annotated with a data transfer time, a
label indicating either bus based or direct module communication. Moreover, eachti
has two attributesIncoming(ti) andOutgoing(ti) defined as follows:
• ChoiceandFork
If Outgoing(ti) = Choice[Outgoing(ti) = Fork], ti invokes one of the successor tasks
nondeterministically [all of the successor tasks in parallel, resp.] when it is finished.
• EndChoiceandJoin
If Incoming(ti) = EndChoice[ Incoming(ti) = Join], ti starts its execution when one
of the predecessor tasks is finished [all of the predecessor tasks are finished, resp.].

2

We specify a behavior of a bus based system by a pair of BC and BS, as shown in
the following example.

1Eachti can be a dummy node (a task whose execution time is zero) to describe a control flow dependency.
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Example 1 In the bus based system described in Fig. 2(a), only modules A, C, and E
are connected to the bus, module A is connected only to B, and module D is connected
only to C. For this bus based system, we may define the following BSs, Scenario1 and 2
(see Fig. 2(b),(c)). In Scenario1, A fetches data from E, performs some data manipula-
tion, and then transfers data toeitherB or C. If C gets data from A, C manipulates data
and then transfers them to D. On the other hand, in Scenario2, C fetches data from E,
performs some data manipulation, and then transfers data toboth A and D. Then A
transfers data to B on getting data from C. 2

Example 2 Fig. 3-(a) describes choice of the two BSs in Example 1 in a BS. The
labeled arcs bt1,. . . ,bt4 represent bus transfers. 2

In Fig. 3-(a), several tasks can be executed simultaneously due to the nature of a
pipelined behavior (Fig. 3-(b)). But since a bus is shared among multiple modules, no
two bus data transfers can occur at the same time (called abus conflict, illustrated in
Fig. 3-(c)). Moreover, since the bus based system has only one module C, two tasks in
different paths cannot be executed by the module C at the same time (called aresource
conflict, illustrated in Fig. 3-(d)). The same is true for A, B and D. In general, multiple
tasks in a BS can be executed on a single module only once at a time.

It is therefore conceivable to employ a Time Petri Net (TPN) to define the execu-
tion semantics of a BS. ATPN is a bipartite directed graph consists of circles (called
places), rectangles (calledtransitions), and directed arc between places and transitions,
where each transition has a minimum and maximum time constraint (δmin andδmax, re-
spectively), each arc has aweight, and each place can holdtokens. Each transitiont is
enabledwhen every predecessor place has tokens more than or equal to the weight of
its outgoing arc tot. An enabled transitiont may befired after some timeδ satisfying
δmin ≤ δ ≤ δmax has elapsed since it was last enabled, and still remains enabled. It must
be fired at the last time it can be fired unless it is disabled. If a transitiont is fired,
some tokens in all the predecessor places oft are removed, and some tokens are added
to every successor place oft. The number of removed/added tokens for each place is
equal to the weight of the arc connecting the place and the transitiont. A TPN is called
live if and only if any transition of the TPN is firable infinitely often. A TPN is called
bounded(or safe) if and only if the number of tokens in any place is bounded to some
fixed constant.2

We define the execution semantics of a BS as follows.
Definition 3 The execution semantics of a BS is defined as that of Time Petri Net
(TPN) constructed from the BS by the following two successive transformations.

2Due to the lack of space, we do not recall the formal definition of the syntax and operational semantics of TPN. For
detail, refer to [12].
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Figure 5: Transformation from BS to 1-Safe TPN (Nondeterministic Choice)

Transformation 1. (Transformation from a BS to a 1-safe TPN)
Each node in a BS is translated into a 1-safe TPN by the transformation functionf
in Figs. 4, 5, and 6. where circles and rectangles represent places and transitions in
TPN, respectively,[t] on a transition indicates that both the minimum and the maxi-
mum time passages of the transition are the non-negative real numbert.

Transformation 2. (Transformation of subnets for resolving resource conflicts)
When different places are labeled with the same module name, we transform the sub-
net as in Fig. 7 to resolve a resource conflict of the place. 2

Note that after applied Transformation 1. in Definition 3, according to its structure, the
obtained 1-safe TPN is ensured to live. However, after Transformation 2. in Defini-
tion 3, the obtained TPN is not ensured to live, depending on each real time budget to be
assigned to each task (transition). Therefore, we have to explore the appropriate value
of real time budget for each task to ensure the liveness and given latency/throughput
constraints.

3 REAL TIME BUDGETING PROBLEM
In this section, we define the real time budgeting problem as follows.
Definition 4 The real time budgeting problemto a bus based system is to derive a
real time budget on each task satisfying a given top-level latency/throughput constraint
on the bus based system from the following inputs: 1) a BC describing the target ar-
chitecture of the bus based system, 2) a BS describing the set of timed task execution
sequences of the bus based system, 3) a bus data transfer time for each module under
the condition there is no bus conflict, 4) a weight for each task, 5) a latency/throughput
constraint, and 6) a bus arbitration policy(either a fixed priority or a time divided
round robin based) (illustrated in Fig. 8). 2

In our method, we try to derive as much real time budgets as possible.
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Example 3 The bus based system configuration of a MPEG decoder bus based
system[9] is depicted in Fig. 9.

An input packet first goes to the coded video bit-stream interface(CVIF), is stored
to an external memory(extDRAM) once, and then is read by the variable length de-
coder(VLD). After VLD processing, a conditional branching occurs according to the
sort of the input frame. As for I frame, the output image is constructed by simply de-
coding the input packet. For P and B frames, the output images are constructed using
the difference from the previous frames (case of P frame) or both the previous and next
frames (case of B frame). In the I frame decoding process, the MPEG decoder per-
forms variable length decoding(VLD), inverse quantization(IQ), inverse discrete co-
sine transformation(IDCT), motion compensation(MC), and then decodes the output
image. In P or B frame decode processing, parameters including a motion vector are
extracted from an input frame(VLD,RISC), a reference image is fetched(RMEM), mo-
tion compensator(MC) is executed, and then an image is decoded. The decoded image
is stored to an external memory(extDRAM), transfered to a buffer(DispFIFO), sent to
a format transformation(DVIF), and then is finally outputted.

We show the corresponding BS in Fig. 10, wheretik indicates a time budget for the
k-th task onPath(i) and we omit local storages RMEM, DMEM, and DispFifo in the
BS since their execution time can be characterized as0 by regarding accesses to them
as a part of execution of other tasks.

The arcs labeled withbt1, . . . , bt8 represent bus data transfers. In this example, a
fixed priority based bus arbitration is given asbt0 < bt1 < . . . < bt8. Moreover, each
bus data transfer time without any bus conflicts is given as in Table 1-(a). Note that
each bus data transfer time without any bus conflicts can be obtained by dividing the
given total amount of transferred data by the given bus transfer rate.

As for the weight of each node, we set0 to nodes indicating bus data transfers, and
roughly estimate a MOPS(Million Operation Per Seconds)/ (the number of available
arithmetic components in the implementation) of each module.3 According to [11], we
assume that the performance of MC and DCT is 1 pixel/cycle, respectively. Then we
determine the number of available arithmetic components in the implementations of
MC and DCT are 128 and 12, respectively. The weight for each task is depicted in

3In the calculation of the MOPS, we referred to [10].
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Table. 2.
We set the latency/throughput constraints on the pipelined MPEG decoder bus

based system to be 4/30[sec.] and 1/30[sec.], respectively, where we assume the num-
ber of stages of the pipelined bus based system is 4 (the same as [11]).

In this case, the real time budgeting problem is to derive the set of real time budgets
tik for all tasks satisfying the given latency/throughput constraints, which is shown in
Table 5. 2

4 REAL TIME BUDGETING METHOD
In this section, we describe the method to derive a set of real time budgets for all bus
transfers and tasks while considering bus and resource conflicts. In the sequel, we
denote each directed path from the input node to an output node on a BS byPath(i) (i
is an index for each path). We also denote the set of all tasks onPath(i) by T(Path(i)).

4.1 Estimating Bus Time Budgets
In our proposed method, we will calculate the worst case execution time (WCET for
short) for each bus data transfer with a fixed priority based or a time divided round robin
based bus arbitration provided that each bus is mostly congested. Then, we assign the
obtained WCET to each bus transfer time budget. We assume that if a bus transfer does
not consume all the assigned bus time budget, the module that receives the bus transfer
must wait until the rest of the time budget is consumed.
1. We assume that a BS hasn bus data transfers{bt1,bt2, . . ., btn} and their data transfer
time without any bus conflict are{x1, x2, . . ., xn}.

(a) Fixed priority based arbitration
In this case, a bus arbiter grants a bus access to the bus request module that has the
highest priority among all the pending bus requests. Here we assume that a priority
valueσ(i) has a higher priority than anotherσ( j) whenσ(i) < σ( j). Thus, if the
priority of a bus data transferbti isσ(i) (1 ≤ σ(i) ≤ n), WCETx′i of bus data transfer
atbti is given asxi +

∑
σ( j)<σ(i) x j , whereσ : {1, . . ., n} 7→ {1, . . ., n} is a permutation.

(b) Time divided round robin based arbitration
In this case, each module can access to each bus within a given time slicetslice by
turn. Therefore, if differentn modules access the same bus at the same time, WCET
x′i of the bus data transferbti is dxi/tslicee × tslice× n.
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Table 1: Worst Case Execution Time of Each Bus Data Transfer
Bus data transfer transition (a) (b)

(in priority order) Transfer time[msec.] WCET[msec.]
bt0 1.08 1.08
bt1 1.08 2.16
bt2 1.08 3.24
bt3 1.08 4.32
bt4 1.08 5.4
bt5 1.08 6.48
bt6 2.16 8.64
bt7 0.030375 8.670375
bt8 0.06075 8.731125

We set the time constraintx′i to bti . We perform this procedure to all bus data transfers
in a BS.

2. For each path in a BS, we sum up WCETs of all arcs representing the bus data
transfers, which are estimated by 1., and subtract the sum from the given latency
constraint to obtain the total task time budgetLwi(0) for tasks on each pathPath(i).

Example 4 The estimated WCETs for each bus data transfer of Example 3 is shown
in Table 1-(b). 2

4.2 Estimating Task Time Budgets
In this section, we describe how to estimate a time budget for each task while consid-
ering resource conflicts. In the sequel, we use a vector of the total task time budgets−−−−→
Lw(0) = (Lw1(0), . . ., Lwn(0)) calculated in the previous subsection for each path on a
BS.

Step1 (Estimating task time budget under the assumption that no resource conflicts
happen)
For each pathPath(i) (i ∈ {1, . . . , n}) of the BS, we calculate a weighted average
of the total task time budgetLwi(0) w.r.t a weight specified for each task onPath(i)
and then set it as an estimated time budget for the corresponding task. For any task
t ∈ T(Path(i)), a time budgetVali(Lwi(0), t) for t is given asVali(Lwi(0), t) def

= Lwi(0)×
Weight(t)/WS(i), whereWeight(t) represents the weight specified to the taskt ∈ T
andWS(i) is the sum of the weights specified to the tasks on the pathPath(i), i.e.
WS(i) def

=
∑

t′∈T(Path(i)) Weight(t′). A time budgetVal(
−−−−→
Lw(0), t) for a taskt is given as

Val(
−−−−→
Lw(0), t) def

= mini∈{1,...,n}{Vali(Lwi(0), t)}.
Step2 (Estimating task time budget under the assumption that resource conflicts

8



Table 2: Weights for Each Task Operation
k Path(1) Path(2) Path(3) Path(4)
1 CVIF 1.944 1.944 1.944 1.944
2 VLD 1.2 1.2 1.2 1.2
3 RZD 2.4 2.4
4 IQ 4 4
5 IDCT L 7.7916 7.7916
6 IDCT C 7.7916 7.7916
7 MC 0.030375 1.09375
8 DVIF 10 10
3 RISC 1.2 2.4
4 MC 0.030375 0.06075
5 MC 1.09375 1.09375
6 DVIF 10 10

Total 35.157575 36.220950 15.468125 16.698500

Table 3:Lw(0) andLw(1) for Each Path
Lw(0)[msec.] Lw(1)[msec.]

Path(1) 122.533 32.468489
Path(2) 121.453 39.960259
Path(3) 106.311 78.467468
Path(4) 104.128 83.172884

happen at mostj times)
Initially, let j := 1. A taskt might encounter resource conflict if some other taskt′
is executed on the same module (that is,t and t′ are annotated with the same mod-
ule name). Under the assumption that every task on each pathPath(i) always has at
most j resource conflicts, we first calculate the worst case resource conflict resolution
time TCon f(i, j) at each task on the same module.TCon f(i, j) is a time passage to
wait for that all tasks on the same module in different paths on a BS acquire and re-
lease the module resourcej times. In this calculation, we use a time budget for each
task estimated at Step1.TCon f(i, j) def

=
∑

t∈T(Path(i))
∑

k∈{1,...,n}\{i}
∑

t′∈T(Path(k))∩Con f Task(t)
(Vali(Lwi( j−1), t′)× j), whereCon f Task(t) is a function returning the set of tasks exe-
cuted on the same module ast on the other paths, or empty when such tasks do not ex-
ist. Then we calculate a new total task time budgetLwi( j) by subtractingTCon f(i, j)
from Lwi( j − 1) of pathPath(i) and perform Step1 to recalculate a time budget for
each task, i.e.,Lwi( j) def

= Lwi( j − 1)− TCon f(i, j).
Step3 (Validation of the estimated task time budgets at Step2)

We annotate the estimated task time budgets{Vali(Lwi( j), t)}i∈{1,...,n},t∈T(Path(i)) to TPN
representing the timed execution semantics of a BS. Then, we check whether the
annotated TPN satisfies liveness and the given throughput/latency constraints (see
Sect. 4.3). If all the properties are satisfied, go to Step4. Otherwise incrementj and
then go to Step2.

Step4 (Interpolation between two estimated time budgets)
Intuitively, a better solution compared with the solution derived at Step3{Val(

−−−−−→
Lwi( j),

t)}t∈T exists between{Val(
−−−−−→
Lwi( j), t)}t∈T and{Val(

−−−−−−−−−→
Lwi( j − 1), t)}t∈T .

We interpolate withK points betweenLwi( j −1) andLwi( j), whereK is an arbitrarily
determined number.

Step5 (Solution exploration via binary search)
To find the best solution among the solution candidates constructed at Step4 effec-
tively, we perform the binary search. In the binary search, we iteratively apply Step3
while updating the total task time budgets. In this way, we will find the maximum
time budget solution satisfying the given latency and throughput constraints among
the interpolatedK solution candidates.

Example 5 For Example 3, the derived values of
−−−−−−−−→
Lw( j − 1) and

−−−−→
Lw( j) are shown in

Table 3. In this case, the time budget based on
−−−−→
Lw(1) satisfies the liveness and given

latency/throughput constraints. Thus, we can conclude thatj = 1 and the best solution
may exists between

−−−−→
Lw(0) and

−−−−→
Lw(1). 2
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Figure 11: Initial Places of (a) 1-Safe TPN, and (b) 2-Safe TPN with Extra Transition
as Throughput Assertion

4.3 Validating End-to-End Constraints For Estimated Time Bud-
gets

In this section, we will explain how to perform liveness analysis and throughput/latency
constraint checking for TPN constructed from a given BS with real time budgets cal-
culated at Sect. 4.2.

To check whether the given bus based system with the estimated real time budgets
using the method in Sect. 4.2 satisfies liveness and throughput constraints, we annotate
the real time budgets and the bus data transfer WCETs to corresponding transitions
of TPN A derived from a given BS by Definition 3. LetB be the obtained TPN. Let
Pinit andPinitadded be the initial place of TPNB and the inserted place to force the place
Pinit be 1-safe, respectively (see Fig. 11(a)). IfB does not satisfy the given throughput
constraint, and if we remove the restriction forcingPinit to be 1-safe, the number of
tokens inPinit will eventually become more than two. To verifyPinit is always 1-safe
even without any additional subnets forcing it to be 1-safe, we modifyB to constructC
by changing the number of tokens in placepinitadded to be two, adding a new transition
Tch and an arc with weight 2 fromPinit to Tch (see Fig. 11(b)). Obviously,C is a
bounded (2-safe) TPN4 due to its structure [8]. If all the transitions exceptTch of C are
live, TPNB satisfies a given throughput constraint even without any additional subnets
forcing Pinit to be 1-safe. We apply a Time Petri Net analysis tool TINA [7] to check
this.

To check whether the given bus based system with the real time budgets satis-
fies latency constraint, we apply TINA to perform a TPN simulation forC, to obtain
transition firing sequences. We analyze the transition firing sequences to calculate the
maximum time passage from a source transition, which corresponds to the data input
node in the given BS, to sink transitions, which correspond to the data output nodes in
the given BS, and then check the maximum time passage is less than or equal to the
given latency constraint.5

5 EXPERIMENTAL RESULT
As a case study, we present the result of the proposed method applied to Example 3.

In this experiment, we set the numberK of interpolation points for the binary search
to 262,144 (218). The experimental result of real time budget exploration via binary
search is shown in Table 4.

For the latency analysis, we simulate 10,000 frames for every analysis using
TINA. As the result of binary search, the obtained most relaxed total time budget is
132.616461[msec.]. The obtained most relaxed real time budgets for all tasks satisfy-
ing both the latency and throughput constraints are shown in Table 5.

By using the result, if each task is implemented to each module while satisfying the
derived real time budget, the entire system is ensured to satisfy the given end-to-end
real-time constraints. The budgeting policy is fair since the computational complexity
of each task is considered. Moreover, if some task does not consume the assigned
budget entirely, we can slow down the task execution by either reducing the clock

4In general, the problem to check whether TPN is bounded or not is undecidable[13].
5The latency constraint can be formally checked by using a model checker for TPNs that is capable of checking time

bounded liveness properties (e.g. “whenever some event A happens, some event B will eventually happen within timet”),
but we had no such choice since there were no such model checker handy at the time of our experiment.
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Table 4: Search Result for Real Time Budgets
search Interpolated liveness throughput latency latency
order point check const. [nsec.] const.

index (≤ 1/30?) (≤ 4/30?)
1 0 NG NG 421878817 NG
10 1024 NG NG 390280520 NG
13 1152 NG NG 137476760 NG
20 1153 OK OK 132616461 OK
19 1154 OK OK 132615839 OK
18 1156 OK OK 132614597 OK
17 1160 OK OK 132612109 OK
16 1168 OK OK 132607134 OK
15 1184 OK OK 132597187 OK
14 1216 OK OK 132577291 OK
12 1280 OK OK 132537498 OK
11 1536 OK OK 132378334 OK
9 2048 OK OK 132060003 OK
8 4096 OK OK 130786680 OK
7 8192 OK OK 128240028 OK
6 16384 OK OK 123146731 OK
5 32768 OK OK 112960133 OK
4 65536 OK OK 92586938 OK
3 131072 OK OK 57776175 OK
2 262144 OK OK 43268489 OK

Table 5: Derived Real Time Budgettik for Each Task
Path(1) Path(2) Path(3) Path(4)

k [nsec.] [nsec.] [nsec.] [nsec.]
1 CVIF 6479998.129 6479998.129 6479998.129 6479998.129
2 VLD 4157695.707 3999998.845 3999998.845 3999998.845
3 RZD 8315391.414 7999997.691
4 IQ 13858985.69 13333329.48
5 IDCT 26995918.23 25971992.5
6 IDCT 26995918.23 25971992.5
7 MC 105241.6726 3645832.281
8 DVIF 33333323.71 33333323.71
3 RISC 8230496.1 14937640.19
4 MC 208334.4325 378109.0173
5 MC 3645832.281 3645832.281
6 DVIF 33333323.71 33333323.71

frequency of the executing module or stopping the clock when the task is finished, to
save the power consumption. The same is true for bus transfer time budgets.

6 CONCLUSION
In this paper, we proposed a method to derive a real time budget for each task executed
on each module of a given pipelined bus based system with a single input stream with a
fixed data input rate and multiple output streams. In our method, a set of module level
task execution and bus data transfer sequences of a bus based system is specified by
our proposed model, a bus scenario. We present a case study on a MPEG decoder bus
based system to show usefulness of our proposed method.

[14] proposed a real-time scheduling method to a single TDMA bus based system
under the assumption that a fixed execution time for each task and each data transfer on
the bus are given. However, resource conflicts due to pipelined behavior is not consid-
ered in [14]. On the contrary, our proposed method considers resource conflicts due to
pipelined behavior. Therefore, we can relax a real time budget for each task by expand-
ing end-to-end latency constraints while satisfying a given throughput constraint. This
yields the lower power dissipation by reducing clock frequency and/or supply voltage.

We presented only MPEG2 decoder example as a case study, but we believe that
we can apply our proposed method to other examples like a TCP/IP interface, a USB
interface, and a digital baseband logic while ignoring their reactive behaviors. It is
true that such an application does not always exhibit a pure pipelined behavior since a
reactive behavior for such a system is usually required for error handling. However, if
such an error handling sequence dose not have a real-time constraint, our method can
be applied to derive a real time budget for each task in normal execution sequences as
an initial solution.
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The future work is to apply our proposed method to other pipelined bus based
systems, to relax bus data transfer WCET by analyzing the actual bus data transfers,
and then to relax a real time budget for each task executed in each module by taking
advantage of the relaxed bus data transfer WCET.

Another future work is to extend our proposed method by incorporating existing
bus access optimization methods[14, 15]. By changing the weight for each task and
number of modules which cause resource conflicts, a rough estimation for each task
and bus data transfer starting time can be derived on-the-fly to work with bus access
optimization methods.
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