A Method for Functional Testing of Media
Synchronization Protocols

Makoto Yamada, Takanori Mori, Atsushi Fukada,
Akio Nakata and Teruo Higashino

Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University,
Toyonaka Osaka, 560-8531, Japan

Abstract. In this paper, we propose a functional testing method of media syn-
chronization protocols, which control the synchronization between audio and
movie, described in concurrent synchronous timj€@ddutomata. In order to trace

all test sequences/(@ event sequences) with synchronization on the model, we
need to execute eacf event at an adequate timing which satisfies the whole
timing constraint for all the given test sequences. However, the outputs are given
from the IUT and uncontrollable. Also each outfsynhchronization timing may
affect executable timing for its succeediri@ levents in the test sequences. In this
paper, we propose a technique to derive a set of time intervals which make all the
given test sequences executable, and propose a method for functional testing us-
ing the technique.

1 Introduction

Recently many multimedia systems, which make use of various information media such
as audio, video, images and text, have been developed and utilized. Multimedia systems
usually can be modeled as real-time systems and timing constraint® @vénts are
imposed upon such systems in order to guarantee their QoS. Especially, multimedia
synchronization protocols can be modeled as a concurrent model in which multiple
real-time modules work cooperatively [4,5]. Timed automata or timed Petri nets have
been taken into account for specifying such real-time systems[1] and used for specify-
ing multimedia systems][3, 6]. Functional testing[7], which tests whether a given IUT
(Implementation Under Test) possesses the functions designated in its specification, is
an dfective way for improving the reliability of such multimedia systems.

In this paper, we propose a functional testing method for media synchronization
protocols, which control the synchronization among audio and video media. Here, for
simplicity of discussion, we assume that each media synchronization protocol consists
of three modules, (1) a module receiving and playing out audio data, (2) a module re-
ceiving and playing out video data and (3) a module controlling the synchronization
between the above two modules. The modules (1) and (2) receive audio and video data
through the network. The control module (3) synchronizes audio and video every suit-
able intervals. As the testing items, we consider the following items, (a) whether the
synchronization among audio and video media works properly and (b) whether the IUT

can execute an alternative operation when the IUT cannot receive data because of the
delay in the network.

We assume that each module of the media synchronization protocol is described
as a timed /O automaton[2]. In the timed® automaton model, a clock and registers
are available. And each timing constraint on state transitions consists of a logical prod-
uct of linear inequalities composed of the variables that keep the values of the clock
and registers. We generate test sequences that consist of a sef@gwémts for each
timed JO automaton. However, the generated sequences may not be always executable
because executable timing constraints may be imposed on state transitions. Therefore
we need to check the executability of the test sequences, and if they are executable, we
also need to find suitable values of the variables (sucffasvent timing) that enable
the sequence execute. Generally each input to the IUT can be given at the specified
timing. On the other hand, the timing of each output from the IUT is uncontrollable.
Accordingly, when we check the traceability of a test sequence, it is desirable not only
finding an input timing set that makes the whole test sequence executable but also find-
ing feasible inpybutput interval set.

In [2], we proposed a method for checking the traceability of a state transition se-
quence on a single timedd automaton automatically. If the sequence is traceable, we
can derive values of such parameters as input timing automatically. In this paper, com-
bining this method and an idea of [4] for scheduling event timing on concurrent EFSMs,
we propose a method for (1) checking the traceability of concurrent sequences of state
transitions on concurrent timedd automata, in which multiple timed® automata
work cooperatively, and for (2) deriving a series of intervals/@f évent timing that
enables the concurrent sequences.

The rest of this paper is organized as follows. In Section 2, we show our concurrent
timed O automata model. In Section 3, the traceability of concurrent state transition
sequences is defined. In Section 4, we propose a method for generating test sequences
and deriving a set of executable intervals if the sequences are executable. And in Sec-
tion 5, application results of our method are shown. Section 6 concludes this paper.

2 Concurrent Timed 1/O Automata

2.1 Timed I/O Automata

Definition 1. timed 1/O automaton is defined as a 10-tupl® =< S, A, 1/Otype t,
V, Pred, Def, 6, Snit, {Xtinit, Xzinit, - - -» Xcinit} >, where

— S ={s,5,..., 5} is afinite set of states.

— Ais a finite set of O events.

— |/Otype = {1, U {A|v € V} is a finite set of O types, where the symbdks
and! represent input and output, respectively. The synthakpresents that the
input value is assigned to the variablewhose value may be used in the transition
conditions of its succeeding events.

— tis a global clock variable which holds the current time.

— V = {Xq, X2, ..., X} is a set of variables.

— Predis a set of transition conditions, each of which is a logical conjuncijt)
X1, X2, ..., X] Of linear inequalities consisting of variables.
— Def is a set of assignments. An assignment is a function which maps variables
X € V to a linear expressiorf (t, Vv, X1, X, ..., Xk), denoted by « f(t,v, X1, X2,
v Xk)-
— ¢ is a transition functionS x Ax | /OtypexV — S x V.
— Snit € Sis the initial state ofM.
— {Xiinit» Xainit» - - - » Xkinit} IS @ set of the initial values of variablesg, X, ..., X< € V.

. . a$[P]D
A transition onM is denoted bys — S, wheres,s € S,a€ A ' $ € |/Otype
P € PredandD ¢ Def.]
) + synchroni zed_pl ay! . synchroni zed_pl ay!
audi o_| oss! F [x3+3<=t <=x3+5] vi deo_| oss! /[x3+6<=t <=x3+10]
[x0+5<=t <=x0+13] {x0<-t} [X0+14<=t <=x0+24] + {x0<-t}
{x3<-t} {x3<-t}

audi o_decode_r espond?
[x2+4<=t <=x2+6]
{x3<-t}

vi deo_decode_r espond?
[x2+9<=t <=x2+11]

)

audi o_pl ay! vi deo_pl ay! {x3<-t}
[x3+3<=t <=x3+5] [x3+6<=t <=x3+10]
{x0<-t} {x0<-t}

audi o_r ecei ve? audi o_decode_r equest ! vi deo_r ecei ve? vi deo_decode_r equest !
[x0+2<=t <=x0+4] [x1+1<=t <=x1+3] [x0+8<=t <=x0+10] [x1+1<=t <=x1+3]
{xl<-t} \@/ {x2<-t} {x1<-t} \@/ {x2<-t}
(a) Audio Module (b) Video Module

vi deo_pl ay!
audi o_pl ay! [v_count ==0]
[a_co?;\t ==2] {v_count <-v_count +1}

audi o_pl ay!
[a_count!=2]
{a_count<-a_count +1}

synchroni zed_pl ay!
[v_count ==1]
{a_count <-0, v_count <- 0}

vi deo_pl ay!
[v_count ==0]
{v_count <-v_count +1}

synchroni zed_pl ay!
[a_count ==3]
{a_count <-0, v_count <- 0}

audi o_pl ay!
[a_count!=3]
{a_count <-a_count +1}

(c) Synchronization Control Module

Fig. 1. Media Synchronization Protocol

For example, Fig.1 is a system which receives audio and video data from senders,
synchronizes and plays out these media. The system is described as the concurrent
timed /O automata model whose formal semantics is described in Section 2.2. Modules
(a) and (b) receive audio and video data, ask external decoders to decode them and play
out them, respectively. They repeat these behavior. In this system, the fourth frame of
audio and the second frame of video must be synchronized with module (c).

Intuitively, the semantics of our timedQ automaton is as follows. At stasg in
Fig.1(a), if the initial value ofxy is zero, input event audiceceive? is executable be-
tween time 2 and 4 since the transition conditign+ 2 < t < Xy + 4 becomes true. By
executing this transition, module (a) moves to sttdn addition, the current value of
clockt is assigned to variable, according to the assignmext « t. If the execution

time of the input event is.8, thenx; = 3.5 and output event audidecoderequest!
becomes executable between timgé dnd 65. If the output event is executed, module
(a) moves to stats;.

Module (a) receives an audio frame, asks a decoder to decode it and plays out it
simultaneously with a video frame or independently. If module (a) cannot receive a
frame (input event audiceceive? cannot be executed) at satemodule (a) assumes
that the frame is lost, and it executes output event alatis! and moves tes.

In general, the behaviour of a timg@®lautomaton is formally defined as a transition
relation betweerconcrete statesA concrete state is a pair of a control state and an
value-assignment for all variable including the clock varigblEhe transition relation
between concrete states are defined as follows.

Definition 2. A value assignment is a mapping from the set of state variabMs)

{t} into the set of real-numbeIR. For any value assignment and any non-negative
real-valued, let o + d denote the same value assignmenvasxcept that the value

of the clock variabld is increased by (i.e. (o + d)(t) = o(t) + d). For any value
assigmentr and any set of assignment statemdbts Def, let oD denote the same
value assignment as except that the assigned value of variablesppeared in the

left hand of each assignment statements is the corresponding right hand expression, i.e.
if (i < §) € D, thenoD(x) = . We writeo = P if the predicateP holds when the
value-assignment is applied. O

Definition 3. The transition relation between concrete states of a tirfedltomaton
M is defined as the minimum relation derived by the following rules:
” $[P|D
— For each transitiors i’ s,
o for any value assignmentand non-negative real-numbedisuch tha{o+d) £

P, (s o) LR (s, o + d) holds (transition by time passage).
e if $£2, i.e. the actiora$ is not an input action with a variable, for armysuch

thato E P, (s, 0) il (s, D) holdg (transition by JO actions without input
values)

e if $=2, for anyo such thair E P, (s,0) i (s,0(D U {v « W})) (transition
by an input action with an input value). |

Note that our timed/O automaton can simulate the classical Alur's timed automa-
ton [1]. The details are shown in [2].

2.2 Concurrent Timed I/O Automata

In this paper, each media synchronization protocol is modeled as concurrent f@ned |
automata which work cooperatively. Here, we assume that all the automata refer to the
same clock variableand that all the/O events with the same name must be executed
at the same time synchronously.

1 For technical convenience, we attach a dummy value 0 for both input actions without input
values and output actions.

For example, on the system shown in Fig.1, when synchrontayl is executed
on module (a), synchronizealay! is also executed on both modules (b) and (c). The
transition condition for the synchronous events are the logical conjunction of the tran-
sition conditions corresponding to synchronizady! on modules (a), (b) and (c). So,
the synchronous event is executable if and only if the three transition conditions hold.
Formally, it is defined as follows.

Definition 4. A concurrent timed/D automatonM is a finite vector of timed® au-
tomata(Mg,..., M), whose behavior is defined by the minimum transition relation
between concrete states derived by the following rules:

— for anyi € {L...K}, if (5.01) — (S.07), then((sp.....). (1. ... %) —
(s, ---.8). (07, ..., 0p) holds (synchronized time passages).

— for any JO actiona$, let | be the set of indices of timel automata such that the

transition (s, o) i (S,07) is executable. The((si, ...,), (01....,0%)) =

(S, ---.8)s (04, 0)), wheres| = s; and o}, = o for j ¢ | (synchronized
execution of the samgd actions). O

3 Executability of Sequences

In testing of real-time protocols, tester can usually control input timing to IUT. On the
other hand, tester cannot control output timing from IUT. Each output timing ffiegta
executable timing for its succeedin@levents in sequences. Hence, it is desirable that
we can find JO event sequenses which can be executed whenever the IUT produces
outputs. In this section, we define executability of sequences on our concyfent |
timed automata.

3.1 Symbolic Trace

Since values of variables may be updated by executing transitions in a tiGeadi
tomaton, we have to consider how to change the values of those variables for deciding
executability of sequences. We translate values of variables and transition constraints in
given sequences into expressions(symbolic traces) consisting of initial values of vari-
ables, execution time of transition or input values[2].

Formally symbolic traces are defined as follows.

Definition 5. Forapatha = s;a1$:S; . . . Sca$kSkr1 0n a timed JO automatorM (each
s, &, $i(i € {1,...,k+1}) can be repeated), sequenwe- (1%, 11, P1) - - - (@S, tk, Px)
is said to be a symbolic trace af if the following conditions hold.

- t,...,tc are ndifferent variables.
— Assume thatin denotes the set of subscrigig $ =?,}. vi(i € lin) are n different
variables.
— Each predicatd?; contains only the initial values of state variabon M (Xgint,
.., Xanit), input variables beforeth event{v; | j € linN{1,...,i}}) and variables
(ty,...,t).

— If M can execute a sequent®, o) 4, (s1,07) i (sg, 02) =, aby — (S+1,

ois1), thenPy A -+ A Py is satisfied, whergy;, | $ = .} are input values; and
tj(j € {1,...,1}) are execution time of eveaj (tj = ernzldm)' In this case, we say
that the execution sequence abgatisfieghe symbolic tracev.]

b!
a7f0<=t <=8] (. SR Xgaﬂ} c’?[xb xas=4sd a?] 0<=t <=5]

0 @ xa<-t} o t <=15] xa<-t} @
—t el e _,a?[0<=t <=5]
a?[0<=t <=5] b! [5<=t<=8] c?[xb-(xa+l)<=4 {xa<-t)
(i) @ha@f;} hlg;) QR IESLIENE, R,
a?@a b @b [tb- (ta+1)< 488 a?@

O<=ta<=5] — | 5<=t b<=8]

o) tc<=15] 0< t’ a< Sb

Fig. 2. Symbolic Trace

(iii)y (s0

Let us construct a symbolic trace for a sequence shown in Fig.2 (i). First, we express
each variable by expressions containing some of the preceding execution time, initial
values of variables and input variables. Next, for the obtained sequence(ii), we prepare
variables {,, tp, tc) for execution time of events and express constraints of transitions by
using these variables. As a result we obtain a symbolic trace for the se E@GED <
ta < 5], bl@tp[5 < tp < 8], c?@kc[tp — (ta + 1) <4 < tc < 15 a?@;[0 <t < 5].

We say that a symbolic trace is traceable, if for some output timing there exists
some input timing such that the succeeding sequence can be executed. We formalize
the traceability as follows.

Definition 6. For symbolic tracew = (a;1$1, 11, P1) - - - (a3, tk, Pk), T(w) denotes a tu-
ple of conditiong P, ..., P;) for the initial values of variablesXni, ..., X«init), €Xe-
cution timeg; of eventsy$i (1 < i < k) and input values; (if they exist) L < i < k),
whereP is equivalent tdP; or stricter condition tharP; (P; = P;). We callT(w) as an
1/O timing interval O

Intuitively, we say that a symbolic trace is traceable by ary© timing interval
T(w) if the corresponding action sequencenofs executable at any® timing which
satisfiesT (w).

Definition 7. A symbolic tracev = (a;$1, t1, P1) ... (a3, t, Px) is traceablewith re-

spectto /O timing intervalT (w) = (P}, ..., Py), if for any solution(ty, ..., t, v1,..., Vk)

of the conditiorP A- - - A Py, there exists some concrete trgsg, o1) R (sl, o) — al$1"1
d 1

(s, 02) —> _”a*$v (S+1,0is1) SUCh thaidy =ty andd; =t -ty (i€ {2,...,k})). O

3.2 Executability of Concurrent Sequences

The concrete trace of concurrent timeg@® lautomata is generally defined as a concrete
trace of its composed automaton, as defined in Definition 4. Intuitively, we say that

such a concrete trace ctmacethe given set of symbolic traces if tipeojectionof the

trace to each consisting timetDl automaton satisfies the corresponding symbolic trace.
Moreover, if there exists such a concrete trace for a given set of symbolic traces, we say
the set of symbolic traces ieceable Formally, these notions are defined as follows.
Definition 8. For sequencefss, ..., %), (01,...,0k)) N SN (CT-)

(0}, ..., 0})) on concurrent timed/O automataM = (My,..., My), Proji(dia1$; ...

dnan$n) denotes a projection for timegd automatorivi;.

dia;Proji(e) ifa; € A

Proji(dia1$10) ={ Proj/(,d;) otherwise.

Proji(e) = €
Proji(diay$1, d) = Proji((d + di)ai$12))
Proji(e,d) =d

Then, for a given set of symbolic tracss . . ., wi of a concurrent timed/© automaton
M = (My,..., M) and a concrete trace of M, if Proji(a) satisfiesw; for eachi €
{1,...,k}, we say thatr satisfieghe set of symbolic tracesg, . . ., wg. If such a concrete

trace exists, we also say that, . .., w is traceable O
a?@a b!@b c?@c da@d e?@e
P Pb P Pd P
[Pa] @[]'@[C] @[] ,Q[e]
fr@f g?@g d'@d h?@h
[Pf] [Pl s~ I[P d] s [Ph]
i?2@i b'@b j?@]j
[Pi] @[P"b] T [PFi]
Sk »(S"k 4]

Fig. 3. Symbolic Traces for Concurrent TimefD Automata

Sequences on three concurrent tim@d automata are shown in Fig.3. By defi-
nition, actions whose names are the same (output etrasd d! in the figure) are
executed synchronously (simultaneously). For deciding the executability of concurrent
sequences, we also constry@ timing intervals from the tail action to the head one of
the sequence by similar method described in Section 3.1.

Since tail events of each sequeneg,(h? andj?) are input events and they are
executed independently, a condition which denotes that they are executable indepen-
dently is3te[Pe] A Ata[Pr] A 3t;[P;]. Assuming that each timing variable of some action
(such adge) never appears in the transition conditions of other actions (suéh as
Pj), the expression is equivalent ¢gg = teIty3t;[[Pe] A [Pn] A [Pj]]. Next, for syn-
chronous output event that is executed most recently before these three input actions,
we consider a condition which expresses that “there exists some timswch that
these output actions can be executed simultanously and all the succeeding actions can

also be executed.” The condition can be describegras Ity[[Pa] A [Py] A ¢1]. €2,

h? andj? are executable if and only if the condition holds. For input evehtandg?
which are executed independently, we obtain a condigipa 3t.3ty[[Pc] A [Pg] A ¢2].

We construct conditions for the rest of sequences. For a synchronous outpublevent
we obtain a conditiops = Ity[[Pp] A [P{] A ¢s]. Finally, by considering input events
a?, f? andi?, we obtain a conditiomrCond= At,3t¢ 3t;[[Pa] A[P¢] A[Pi] A @a]. Three
sequences shown in Fig.3 are executable simultaneously if and ani¢€dndis true.

4 Functional Testing

In this paper, since we consider systems which communicate through networks, each
input timing to IUT may have jitter (receive timing of frames and acknowledgment
etc.) It is required that there exists some margin for input timing. Furthermore, the
test sequence might not be executable for some output timings, since output timings
are uncontrollable. Therefore, we apply a static scheduling proposed in [4] in order to
obtain suitable/D timing intervals. By using the scheduling method, for given concur-
rent sequences we decide whether there exists some execution timing(intervai3) for |
events such that all the sequences are executable. If there exists such timing intervals
for sequences, we obtain them and determine the sequences are executable. Although
the sequences may not be executed if the IUT does not produce outputs in the expected
intervals, we minimize the influence of output timings on the executability of test se-
quences by making the output timing intervals as wide as possible. Since we can get
information about the output timing corresponding to the executability of sequences by
applying the scheduling method, we can quickly detect that we fail to execute the given
sequences on testing.

4.1 Proposed Testing Method

In the proposed method, we first generate test sequences for checking the correctness
of the functions which we intend to test. Then, we derive time intervals that enable the
test sequences execute for tf@ events in the generated test sequences.

The problem of deriving time intervals for th¢gQ events is formally defined as
follows.

Definition 9. Given concurrent timed® automataM = (Mg, ..., My) and a set of
symbolic tracesvy, ... W, the problem of deriving time intervals fofd events is de-
riving a set of time intervald (w), ..., T(w) for the JO events, which makes all of
Wy, ..., W traceable. O

For the timing of input event, we can choose several timing covering the derived
interval for the input event, when we carry out functional testing actually. In [7], a
useful method for choosing adequate input timing for testing multimedia systems has
been proposed. Ref. [7] recommends that we should test more at timing close to the
boundary in the input timing interval than at timing close to the middle of the interval
as shown in Fig.4.

boundary boundary

input timng interval

Fig. 4. Input Timing

On the other hand, it is impossible to control the timings of output events. So, in
order to make the output timing earlier or later intentionally, we adopt the following
way. In [8], we have proposed and implemented a method to execute existing program
codes in multi-threaded environments where a given program can be converted into a
thread and it can be executed with other threads cooperatively. Here, we assume that
each IUT is given as a program (object coeds). By using the method in [8], we can
convert a given IUT into a thread as shown in Fig.5. In Fig.5, we add the load-control
thread (load controller) as the cooperative thread. If we want to make the output timing
later, the tester asks the load-controller to use CPU time more. As the result, the IUT
cannot use enough CPU time and the output timing from the IUT becomes late. By
adjusting CPU time used by the load-controller, we can make the output timing of the
IUT earlier or later intentionally.

| oad
control | er
R \ Q : thread
tester

Fig. 5. Testing Environment

Here, we will apply the following functional testing method to the IUT. First, we
generate a set of test sequences for functional testing. Then, we derive time intervals
which make the given test sequences executable by using the method described in the
next sub-section. We give the inputs to the IUT at some timing in the derived time inter-
vals and observe the outputs from the IUT. If the outputs are observed at an earlier time
than the expected time intervals, then we make the load-conroller consume much CPU
time so that we can observe the outputs at some timing in the derived time intervals.
We repeat this functional testing process and give inputsfgrdint timing as shown
in Fig.4. If we can observe the corresponding outputs at adequate timing for several
times by adjusting the CPU load for the load-controller, we conclude that we succeed
the functional testing. If we cannot observe tji® events at adequate timing even if
we repeat the above process, then we conclude that there may have some errors for the
implementation of the function to be tested.

4.2 Method for Deriving 1/O Timing Intervals

In the proposed method, first, we generate test sequences corresponding to the functions
that we want to test and transform them into symbolic traces, which reflect the changes
of the values of variables. Based on the scheduling method in [4], we derive executable
time intervals for the/D events in the given traces if they exist.

When we test a synchronized output between audio and video for the media syn-
chronization protocol in Fig.1, we generate test sequences which make the synchro-
nized event “synchronizeglay!” executable for three modules (a), (b) and (c), and
transform them into symbolic traces. Since module (c) in Fig.1 controls only the syn-
chronization by counting the number of repetation and no time constraint is imposed
on the events in it, we omit module (c) from the discussion below. Here, we con-
sider two symbolic traces in Fig.6. These are traces that synchropiagtis executed
synchronously in modules (a) and (b) in Fig.1 when they repeat the cyclic transitions
S — S — S>3 — §fordtimes and 2 times, respectively.

Hereafter, we propose a method for derivifi@ timing intervals of given test se-
guences.

sequence in module (a) sequence in module (b)
audiareceive? @ videareceive? @1
audiadecoderequest! @y video.decoderequest! @,
audiadecoderespond?@s videadecoderespond?@s

audiaplay!@tao videa_play! @ty
audiareceive?@,, videareceive?@,
audiadecoderequest'@,, videadecoderequest!@,
e videa decoderespond?@,
audiadecoderespond?@; synchronizedplay!@t;,
synchronizedplay! @t} videareceive?@)

audiareceive?@;’

Fig. 6. Test Sequences for Synchronized Events (Symbolic Traces)

The condition for each transitioa@t, is supposed to be represented as a logical
product of linear inequalities consisting of variable@epresenting execution time af
and variables used in the preceding events. Therefore, the conditions are represented
as logical products of expressions whose formsaare t, or t; < 8. In order to de-
rive the JO event intervals that make the two traces executable, we give the following
constraints.
(1) Each event is never executed ahead of the preceding events. So, the expressions
below should be satisfied. We add them as the constraint.
tn St <taa<tp=st) <.. <ttt
tV]_St\QSt\QStVoSt\//lS...St\/loﬁt\//l
(2) We introduce two new variablégnin andtymaxthat represent the earliest and latest
executable time df, respectively, and replace the original constraint ty < g8
With @ < tymin < txmax < B-
As for the timing of the synchronized event (synchronipdaly! in the sequences
in Fig.6), we replace the execution tirtjg andt/, of two synchronized events with
the same variable paitofin, tomax)- Then the constraint on synchronizpthy! in

the audio module is replacetf + 3 < tomin < tomax < t} + 5], and that in the
video module is replaced(} + 6 < tomin < tomax < tj; + 10] .

(3) As the objective function for solving the above linear programming problem, we
give the weighted sum of time intervalsv; (timax — timin) » Where adequate weights
(w;) are given. If we want to derive wider time intervals for output events, we can
give larger weightsy; to the output time intervals.

(4) We solve the linear programming problem.

Thus, the solution tells executable time intervals for each event. For each output
event, we judge that the rest of the test sequence is executable if the output is observed
in the derived time interval. On the other hand, we decide that given test sequences are
not executable if we cannot obtain a solution.

5 Example

We apply our method to two test sequences for checking the correctness of the functions
of synchronized events and timeout handling on the media synchronization protocol
shown in Fig.1.

5.1 Functional Test Sequences for Synchronized Events
We apply our method to two symbolic traces and obtain the following solutions

24<tn <28 38<tp<54 94<t,3<9.8 128<ty<144
164<t), <168 178<t,<194 234<t, <238 268<t, <284
304<t]; <308 318<t],<334 37.4<t;<37.8 408<t] <424
44.4<t77 <448 458<t; <474 514<t}7<518 55<tr<56.4
584<t7 <59
8<ty1 <9 10<typ <11 20<t3<21 27<ty <284

364<t, <37 38<t),<394 484<t;<49 55<tr <564
64.4<t; <65

If we give inputs to IUT at adequate timing in obtained intervals and observe outputs
in obtained intervals, the sequence is executable. So we can check the behavior of IUT
and test whether IUT synchronizes correctly.

5.2 Functional Test Sequences for Timeout Handling

We consider that if a synchronized event is executed correctly after executing a time-
out event, the timeout event (timeout handling) is also executed correctly. We apply our
method to the sequences which are obtained by replacing a part of the sequence on mod-
ule (a) shown in Fig.6 (third appearance of auttoeive?@,;, audiadecoderequest! @,
audiadecoderespond?@;) with timeout handling (audidoss!@;). The result is as
follows.

2 |f we want to derive wider intervals for output events, the interval widths for some input events
may become zero. However, it is practicallyffitiult to execute input events at exact tim-
ing. To cope with the problem, we specify the minimum interval width for each input event.
In this example, for input events audieceive?, audialecoderespond?, videoeceive? and
video.decoderespond?, we specify the minimum widths 0.4,0.3,0.6 and 0.5, respectively.

6

2<t; <24 34<t3p<5 9<t<94 124<ty<14
16<t, <164 17.4<t],<19 23<t/, <233 263<t/ <28
37<t;<38 41<t};<42
44<t)7 <45 46<t) <47 5I<ti<52 55<1p<56
58<t/" <59
8<ty1<9 10st,<11 20<t3<2l 27<tn<284
36.4<t), <37 38<t,<394 484<t;<49 55<tr<56
64<t]; <65

Conclusion

In this paper, we specify a media synchronization protocol as a model in which multiple
timed /O automata work in parallel and cooperatively. Then, we propose a method
for functional testing on the model. We also propose a technique for deriving wide
executable time intervals of® events in a given set of test sequences by using linear
programming techniques. As the future work, we are planning to develop an actual
environment for functional testing with the multi-threaded programming method in [8].

References

1.

2.

R. Alur and D. L. Dill : “A theory of timed automata”, Theoretical Computer Science, Vol.
126, pp.183-235 (1994).

T. Higashino, A. Nakata, K. Taniguchi and A. R. Cavalli : “Generating test cases for a timed
1/0 automaton model”, Proc. of 12th IFIP Workshop on Testing of Communicating Systems
(IWTCS'99), pp.197-214 (Sept. 1999).

. C. M. Huang and C. Wang : “Synchronization for Interactive Multimedia Presentations”,

IEEE MULTIMEDIA, Vol. 5, No. 4, pp.44-62 (Oct.-Nov. 1998).

. H. Katagiri, M. Kirimura, K. Yasumoto and T. Higashino and K. Taniguchi : “Hardware

Implementation of Concurrent Periodic EFSMs”, Proc. of Joint International Conference on
13th Formal Description Techniques and 20th Protocol Specification, Testing, and Verifica-
tion (FORTEPSTV2000), pp.285-300 (Oct. 2000).

. D. Lee and M. Yannakakis : “Principles and Methods of Testing Finite State Machines - A

Survey”, Proc. of the IEEE, Vol. 84, No. 8 (1996).

. T. D. C. Little and A. Ghafoor : “Synchronization and storage models for multimedia ob-

jects”, IEEE Journal of Selected Areas in Communications, Vol. 8, No. 3, pp.413-427 (Apr.
1990).

. V. Misic, S. T. Chanson and S. C. Cheung : “Towards a Framework for Testing Distributed

Multimedia Software Systems”, Proc. International Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE98) (Apr. 1998).

. K. Abe, T. Matsuura, K. Yasumoto and T. Higashino : “A Method to Execute Existing Pro-

gram Codes in Multi-theread Environments and Its Implementation” Journal of Information
Processing Society of Japan, Vol. 41, No. 9, pp.2603-2613 (Sep. 2000) (In Japanese).

