
A Method for Functional Testing of Media
Synchronization Protocols

Makoto Yamada, Takanori Mori, Atsushi Fukada,
Akio Nakata and Teruo Higashino

Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University,

Toyonaka Osaka, 560-8531, Japan

Abstract. In this paper, we propose a functional testing method of media syn-
chronization protocols, which control the synchronization between audio and
movie, described in concurrent synchronous timed I/O automata. In order to trace
all test sequences (I/O event sequences) with synchronization on the model, we
need to execute each I/O event at an adequate timing which satisfies the whole
timing constraint for all the given test sequences. However, the outputs are given
from the IUT and uncontrollable. Also each output/synchronization timing may
affect executable timing for its succeeding I/O events in the test sequences. In this
paper, we propose a technique to derive a set of time intervals which make all the
given test sequences executable, and propose a method for functional testing us-
ing the technique.

1 Introduction

Recently many multimedia systems, which make use of various information media such
as audio, video, images and text, have been developed and utilized. Multimedia systems
usually can be modeled as real-time systems and timing constraints on I/O events are
imposed upon such systems in order to guarantee their QoS. Especially, multimedia
synchronization protocols can be modeled as a concurrent model in which multiple
real-time modules work cooperatively [4, 5]. Timed automata or timed Petri nets have
been taken into account for specifying such real-time systems[1] and used for specify-
ing multimedia systems[3, 6]. Functional testing[7], which tests whether a given IUT
(Implementation Under Test) possesses the functions designated in its specification, is
an effective way for improving the reliability of such multimedia systems.

In this paper, we propose a functional testing method for media synchronization
protocols, which control the synchronization among audio and video media. Here, for
simplicity of discussion, we assume that each media synchronization protocol consists
of three modules, (1) a module receiving and playing out audio data, (2) a module re-
ceiving and playing out video data and (3) a module controlling the synchronization
between the above two modules. The modules (1) and (2) receive audio and video data
through the network. The control module (3) synchronizes audio and video every suit-
able intervals. As the testing items, we consider the following items, (a) whether the
synchronization among audio and video media works properly and (b) whether the IUT

can execute an alternative operation when the IUT cannot receive data because of the
delay in the network.

We assume that each module of the media synchronization protocol is described
as a timed I/O automaton[2]. In the timed I/O automaton model, a clock and registers
are available. And each timing constraint on state transitions consists of a logical prod-
uct of linear inequalities composed of the variables that keep the values of the clock
and registers. We generate test sequences that consist of a series of I/O events for each
timed I/O automaton. However, the generated sequences may not be always executable
because executable timing constraints may be imposed on state transitions. Therefore
we need to check the executability of the test sequences, and if they are executable, we
also need to find suitable values of the variables (such as I/O event timing) that enable
the sequence execute. Generally each input to the IUT can be given at the specified
timing. On the other hand, the timing of each output from the IUT is uncontrollable.
Accordingly, when we check the traceability of a test sequence, it is desirable not only
finding an input timing set that makes the whole test sequence executable but also find-
ing feasible input/output interval set.

In [2], we proposed a method for checking the traceability of a state transition se-
quence on a single timed I/O automaton automatically. If the sequence is traceable, we
can derive values of such parameters as input timing automatically. In this paper, com-
bining this method and an idea of [4] for scheduling event timing on concurrent EFSMs,
we propose a method for (1) checking the traceability of concurrent sequences of state
transitions on concurrent timed I/O automata, in which multiple timed I/O automata
work cooperatively, and for (2) deriving a series of intervals of I/O event timing that
enables the concurrent sequences.

The rest of this paper is organized as follows. In Section 2, we show our concurrent
timed I/O automata model. In Section 3, the traceability of concurrent state transition
sequences is defined. In Section 4, we propose a method for generating test sequences
and deriving a set of executable intervals if the sequences are executable. And in Sec-
tion 5, application results of our method are shown. Section 6 concludes this paper.

2 Concurrent Timed I /O Automata

2.1 Timed I/O Automata

Definition 1. timed I/O automaton is defined as a 10-tupleM =< S, A, I/Otype, t,
V, Pred, De f, δ, sinit , {x1init , x2init , . . ., xkinit} >, where

– S = {s0, s1, . . . , sn} is a finite set of states.
– A is a finite set of I/O events.
– I/Otype = {!,?} ∪ {?v|v ∈ V} is a finite set of I/O types, where the symbols?

and ! represent input and output, respectively. The symbol?v represents that the
input value is assigned to the variablev, whose value may be used in the transition
conditions of its succeeding events.

– t is a global clock variable which holds the current time.
– V = {x1, x2, . . . , xk} is a set of variables.

– Pred is a set of transition conditions, each of which is a logical conjunctionP[t,
x1, x2, . . . , xk] of linear inequalities consisting of variables.

– De f is a set of assignments. An assignment is a function which maps variables
xi ∈ V to a linear expressionf (t, v, x1, x2, . . ., xk), denoted byxi ← f (t, v, x1, x2,
. . ., xk).

– δ is a transition function.S × A× I/Otype× V → S × V.
– sinit ∈ S is the initial state ofM.
– {x1init , x2init , . . . , xkinit} is a set of the initial values of variablesx1, x2, . . ., xk ∈ V.

A transition onM is denoted bys
a$[P]D−→ s′, wheres, s′ ∈ S, a ∈ A, $ ∈ I/Otype,

P ∈ PredandD ⊆ De f. �

video_receive?
[x0+8<=t<=x0+10]

{x1<-t}

(b) Video Module

s0 s2

s1

s3

video_decode_request!
[x1+1<=t<=x1+3]

{x2<-t}

video_decode_respond?
[x2+9<=t<=x2+11]

{x3<-t}video_play!
[x3+6<=t<=x3+10]

{x0<-t}

video_loss!
[x0+14<=t<=x0+24]

{x3<-t}

synchronized_play!
[x3+6<=t<=x3+10]

{x0<-t}

audio_receive?
[x0+2<=t<=x0+4]

{x1<-t}

(a) Audio Module

s1

s0 s2

s3

audio_decode_request!
[x1+1<=t<=x1+3]

{x2<-t}

audio_decode_respond?
[x2+4<=t<=x2+6]

{x3<-t}
audio_play!

[x3+3<=t<=x3+5]
{x0<-t}

audio_loss!
[x0+5<=t<=x0+13]

{x3<-t}

synchronized_play!
[x3+3<=t<=x3+5]

{x0<-t}

synchronized_play!
[v_count==1]

{a_count<-0,v_count<-0}

audio_play!
[a_count!=2]

{a_count<-a_count+1}

video_play!
[v_count==0]

{v_count<-v_count+1}

(c) Synchronization Control Module

s0

s2

s1audio_play!
[a_count==2]

{}

video_play!
[v_count==0]

{v_count<-v_count+1}

audio_play!
[a_count!=3]

{a_count<-a_count+1}

synchronized_play!
[a_count==3]

{a_count<-0,v_count<-0}

Fig. 1. Media Synchronization Protocol

For example, Fig.1 is a system which receives audio and video data from senders,
synchronizes and plays out these media. The system is described as the concurrent
timed I/O automata model whose formal semantics is described in Section 2.2. Modules
(a) and (b) receive audio and video data, ask external decoders to decode them and play
out them, respectively. They repeat these behavior. In this system, the fourth frame of
audio and the second frame of video must be synchronized with module (c).

Intuitively, the semantics of our timed I/O automaton is as follows. At states0 in
Fig.1(a), if the initial value ofx0 is zero, input event audioreceive? is executable be-
tween time 2 and 4 since the transition conditionx0 + 2 ≤ t ≤ x0 + 4 becomes true. By
executing this transition, module (a) moves to states1. In addition, the current value of
clock t is assigned to variablex1 according to the assignmentx1 ← t. If the execution

time of the input event is 3.5, thenx1 = 3.5 and output event audiodecoderequest!
becomes executable between time 4.5 and 6.5. If the output event is executed, module
(a) moves to states2.

Module (a) receives an audio frame, asks a decoder to decode it and plays out it
simultaneously with a video frame or independently. If module (a) cannot receive a
frame (input event audioreceive? cannot be executed) at states0, module (a) assumes
that the frame is lost, and it executes output event audioloss! and moves tos3.

In general, the behaviour of a timed I/O automaton is formally defined as a transition
relation betweenconcrete states. A concrete state is a pair of a control state and an
value-assignment for all variable including the clock variablet. The transition relation
between concrete states are defined as follows.

Definition 2. A value assignmentσ is a mapping from the set of state variablesV ∪
{t} into the set of real-numbersR. For any value assignmentσ and any non-negative
real-valued, let σ + d denote the same value assignment asσ except that the value
of the clock variablet is increased byd (i.e. (σ + d)(t) = σ(t) + d). For any value
assigmentσ and any set of assignment statementsD ⊆ De f, let σD denote the same
value assignment asσ except that the assigned value of variablesxi appeared in the
left hand of each assignment statements is the corresponding right hand expression, i.e.
if (xi ← ei) ∈ D, thenσD(xi) = ei . We writeσ |= P if the predicateP holds when the
value-assignmentσ is applied. �

Definition 3. The transition relation between concrete states of a timed I/O automaton
M is defined as the minimum relation derived by the following rules:

– For each transitions
a$[P]D−→ s′,

• for any value assignmentσ and non-negative real-numberd such that(σ+d) |=
P, (s, σ)

d−→ (s, σ + d) holds (transition by time passage).
• if $,?v, i.e. the actiona$ is not an input action with a variable, for anyσ such

thatσ |= P, (s, σ)
a$0−→ (s, σD) holds1 (transition by I/O actions without input

values)

• if $ =?v, for anyσ such thatσ |= P, (s, σ)
a$v−→ (s, σ(D ∪ {v ← v})) (transition

by an input action with an input value). �

Note that our timed I/O automaton can simulate the classical Alur’s timed automa-
ton [1]. The details are shown in [2].

2.2 Concurrent Timed I/O Automata

In this paper, each media synchronization protocol is modeled as concurrent timed I/O
automata which work cooperatively. Here, we assume that all the automata refer to the
same clock variablet and that all the I/O events with the same name must be executed
at the same time synchronously.

1 For technical convenience, we attach a dummy value 0 for both input actions without input
values and output actions.

For example, on the system shown in Fig.1, when synchronizedplay! is executed
on module (a), synchronizedplay! is also executed on both modules (b) and (c). The
transition condition for the synchronous events are the logical conjunction of the tran-
sition conditions corresponding to synchronizedplay! on modules (a), (b) and (c). So,
the synchronous event is executable if and only if the three transition conditions hold.
Formally, it is defined as follows.

Definition 4. A concurrent timed I/O automatonM is a finite vector of timed I/O au-
tomata (M1, . . . ,Mk), whose behavior is defined by the minimum transition relation
between concrete states derived by the following rules:

– for any i ∈ {1, . . . k}, if (si , σi)
d−→ (s′i , σ

′
i), then ((s1, . . . , sk), (σ1, . . . , σk)

d−→
((s′1, . . . , s

′
k), (σ

′
1, . . . , σ

′
k) holds (synchronized time passages).

– for any I/O actiona$, let I be the set of indices of timed I/O automata such that the

transition (si , σi)
a$v−→ (s′i , σ

′
i) is executable. Then((s1, . . . , sk), (σ1, . . . , σk))

a$v−→
((s′1, . . . , s

′
k), (σ′1, . . . , σ

′
k)), wheres′j = sj andσ′j = σ j for j < I (synchronized

execution of the same I/O actions). �

3 Executability of Sequences

In testing of real-time protocols, tester can usually control input timing to IUT. On the
other hand, tester cannot control output timing from IUT. Each output timing may affect
executable timing for its succeeding I/O events in sequences. Hence, it is desirable that
we can find I/O event sequenses which can be executed whenever the IUT produces
outputs. In this section, we define executability of sequences on our concurrent I/O
timed automata.

3.1 Symbolic Trace

Since values of variables may be updated by executing transitions in a timed I/O au-
tomaton, we have to consider how to change the values of those variables for deciding
executability of sequences. We translate values of variables and transition constraints in
given sequences into expressions(symbolic traces) consisting of initial values of vari-
ables, execution time of transition or input values[2].

Formally symbolic traces are defined as follows.

Definition 5. For a pathα = s1a1$1s2 . . . skak$ksk+1 on a timed I/O automatonM (each
si ,ai ,$i(i ∈ {1, . . . , k+ 1}) can be repeated), sequencew = (a1$1, t1,P1) · · · (ak$k, tk,Pk)
is said to be a symbolic trace ofα, if the following conditions hold.

– t1, . . . , tk aren different variables.
– Assume thatIin denotes the set of subscripts{i | $i =?vi }. vi(i ∈ Iin) are n different

variables.
– Each predicatePi contains only the initial values of state variablesV on M (x1init ,
. . . , xkinit), input variables beforei-th event ({v j | j ∈ Iin ∩ {1, . . . , i}}) and variables
(t1, . . . , ti).

– If M can execute a sequence(s1, σ1)
d1−→ (s1, σ

′
1)

a1$1v1−→ (s2, σ2)
d2−→ . . .

ai$ivi−→ (si+1,
σi+1), thenP1 ∧ · · · ∧ Pk is satisfied, where{vi | $i =?vi } are input valuesvi and
t j(j ∈ {1, . . . , i}) are execution time of eventa j (t j = Σ

j
m=1dm). In this case, we say

that the execution sequence abovesatisfiesthe symbolic tracew. �

s0 s1 s2 s0

a?[0<=t<=5]
{xa<-t}

b![5<=t<=8]
{xb<-t,xa<-xa+1} c?[xb-xa<=4&&

t<=15]
s1

a?[0<=t<=5]
{xa<-t}

(i)

s0 s1 s2 s0

a?[0<=t<=5]
{xa<-t}

b![5<=t<=8]
{xb<-t}

c?[xb-(xa+1)<=4
&&t<=15]

@ta @tb @tc
s1

a?[0<=t<=5]
{xa<-t}

@t’a
(ii)

s0 s1 s2 s0

a?@ta
[0<=ta<=5]

b!@tb
[5<=tb<=8]

c?@tc
[tb-(ta+1)<=4&&

tc<=15]
s1

a?@t’a
[0<=t’a<=5]

(iii)

Fig. 2. Symbolic Trace

Let us construct a symbolic trace for a sequence shown in Fig.2 (i). First, we express
each variable by expressions containing some of the preceding execution time, initial
values of variables and input variables. Next, for the obtained sequence(ii), we prepare
variables (ta, tb, tc) for execution time of events and express constraints of transitions by
using these variables. As a result we obtain a symbolic trace for the sequencea?@ta[0 ≤
ta ≤ 5],b!@tb[5 ≤ tb ≤ 8], c?@tc[tb − (ta + 1) ≤ 4 ≤ tc ≤ 15],a?@t′a[0 ≤ t′a ≤ 5].

We say that a symbolic tracew is traceable, if for some output timing there exists
some input timing such that the succeeding sequence can be executed. We formalize
the traceability as follows.

Definition 6. For symbolic tracew = (a1$1, t1,P1) · · · (ak$k, tk,Pk), T(w) denotes a tu-
ple of conditions(P′1, . . . ,P

′
k) for the initial values of variables (x1init , . . . , xkinit), exe-

cution timesti of eventsai$i (1 ≤ i ≤ k) and input valuesvi (if they exist) (1 ≤ i ≤ k),
whereP′i is equivalent toPi or stricter condition thanPi (P′i ⇒ Pi). We callT(w) as an
I/O timing interval. �

Intuitively, we say that a symbolic tracew is traceable by an I/O timing interval
T(w) if the corresponding action sequence ofw is executable at any I/O timing which
satisfiesT(w).

Definition 7. A symbolic tracew = (a1$1, t1,P1) . . . (ak$k, tk,Pk) is traceablewith re-
spect to I/O timing intervalT(w) = (P′1, . . . ,P

′
k), if for any solution(t1, . . . , tk, v1, . . . , vk)

of the conditionP′1∧· · ·∧P′k, there exists some concrete trace(s1, σ1)
d1−→ (s1, σ

′
1)

a1$1v1−→
(s2, σ2)

d2−→ . . .
ai$ivi−→ (si+1, σi+1) such thatd1 = t1 anddi = ti − ti−1 (i ∈ {2, . . . , k}). �

3.2 Executability of Concurrent Sequences

The concrete trace of concurrent timed I/O automata is generally defined as a concrete
trace of its composed automaton, as defined in Definition 4. Intuitively, we say that

such a concrete trace cantrace the given set of symbolic traces if theprojectionof the
trace to each consisting timed I/O automaton satisfies the corresponding symbolic trace.
Moreover, if there exists such a concrete trace for a given set of symbolic traces, we say
the set of symbolic traces istraceable. Formally, these notions are defined as follows.

Definition 8. For sequences((s1, . . . , sk), (σ1, . . . , σk))
d1−→ a1$1−→ · · · dn−→ an$n−→ ((s′1, . . . , s

′
k),

(σ′1, . . . , σ
′
k)) on concurrent timed I/O automataM = (M1, . . . ,Mk), Pro ji(d1a1$1 . . .

dnan$n) denotes a projection for timed I/O automatonMi .

Pro ji(d1a1$1α) =

{
d1a1Pro ji(α) if a1 ∈ Ai

Pro j′i (α, d1) otherwise.

Pro ji(ε) = ε

Pro j′i (d1a1$1α, d) = Pro ji((d + d1)a1$1α))

Pro j′i (ε, d) = d

Then, for a given set of symbolic tracesw1, . . . ,wk of a concurrent timed I/O automaton
M = (M1, . . . ,Mk) and a concrete traceα ofM, if Pro ji(α) satisfieswi for eachi ∈
{1, . . . , k}, we say thatα satisfiesthe set of symbolic tracesw1, . . . ,wk. If such a concrete
trace exists, we also say thatw1, . . . ,wk is traceable. �

sk sk+1 sk+2 sk+3

a?@ta
[Pa]

b!@tb
[Pb]

c?@tc
[Pc]

s’k’ s’k’+1 s’k’+2

s"k" s"k"+1

d!@td
[Pd]

b!@tb
[P"b]

d!@td
[P’d]

f?@tf
[Pf]

g?@tg
[Pg]

e?@te
[Pe]

h?@th
[Ph]

i?@ti
[Pi]

j?@tj
[Pj]

Fig. 3. Symbolic Traces for Concurrent Timed I/O Automata

Sequences on three concurrent timed I/O automata are shown in Fig.3. By defi-
nition, actions whose names are the same (output eventsb! and d! in the figure) are
executed synchronously (simultaneously). For deciding the executability of concurrent
sequences, we also construct I/O timing intervals from the tail action to the head one of
the sequence by similar method described in Section 3.1.

Since tail events of each sequence (e?, h? and j?) are input events and they are
executed independently, a condition which denotes that they are executable indepen-
dently is∃te[Pe]∧∃th[Ph]∧∃t j [P j]. Assuming that each timing variable of some action
(such aste) never appears in the transition conditions of other actions (such asPh or
P j), the expression is equivalent toϕ1 = ∃te∃th∃t j [[Pe] ∧ [Ph] ∧ [P j]]. Next, for syn-
chronous output eventd! that is executed most recently before these three input actions,
we consider a condition which expresses that “there exists some timingtd such that
these output actions can be executed simultanously and all the succeeding actions can

also be executed.” The condition can be described asϕ2 = ∃td[[Pd] ∧ [P′d] ∧ ϕ1]. e?,
h? and j? are executable if and only if the condition holds. For input eventsc? andg?
which are executed independently, we obtain a conditionϕ3 = ∃tc∃tg[[Pc] ∧ [Pg] ∧ ϕ2].
We construct conditions for the rest of sequences. For a synchronous output eventb!,
we obtain a conditionϕ4 = ∃tb[[Pb] ∧ [P′′b] ∧ ϕ3]. Finally, by considering input events
a?, f ? andi?, we obtain a conditionTrCond= ∃ta∃t f∃ti [[Pa]∧ [Pf]∧ [Pi]∧ϕ4]. Three
sequences shown in Fig.3 are executable simultaneously if and only ifTrCondis true.

4 Functional Testing

In this paper, since we consider systems which communicate through networks, each
input timing to IUT may have jitter (receive timing of frames and acknowledgment
etc.) It is required that there exists some margin for input timing. Furthermore, the
test sequence might not be executable for some output timings, since output timings
are uncontrollable. Therefore, we apply a static scheduling proposed in [4] in order to
obtain suitable I/O timing intervals. By using the scheduling method, for given concur-
rent sequences we decide whether there exists some execution timing(intervals) for I/O
events such that all the sequences are executable. If there exists such timing intervals
for sequences, we obtain them and determine the sequences are executable. Although
the sequences may not be executed if the IUT does not produce outputs in the expected
intervals, we minimize the influence of output timings on the executability of test se-
quences by making the output timing intervals as wide as possible. Since we can get
information about the output timing corresponding to the executability of sequences by
applying the scheduling method, we can quickly detect that we fail to execute the given
sequences on testing.

4.1 Proposed Testing Method

In the proposed method, we first generate test sequences for checking the correctness
of the functions which we intend to test. Then, we derive time intervals that enable the
test sequences execute for the I/O events in the generated test sequences.

The problem of deriving time intervals for the I/O events is formally defined as
follows.

Definition 9. Given concurrent timed I/O automataM = (M1, . . . ,Mk) and a set of
symbolic tracesw1, . . .wk, the problem of deriving time intervals for I/O events is de-
riving a set of time intervalsT(w1), . . . ,T(wk) for the I/O events, which makes all of
w1, . . . ,wk traceable. �

For the timing of input event, we can choose several timing covering the derived
interval for the input event, when we carry out functional testing actually. In [7], a
useful method for choosing adequate input timing for testing multimedia systems has
been proposed. Ref. [7] recommends that we should test more at timing close to the
boundary in the input timing interval than at timing close to the middle of the interval
as shown in Fig.4.

input timing interval

boundary boundary

Fig. 4. Input Timing

On the other hand, it is impossible to control the timings of output events. So, in
order to make the output timing earlier or later intentionally, we adopt the following
way. In [8], we have proposed and implemented a method to execute existing program
codes in multi-threaded environments where a given program can be converted into a
thread and it can be executed with other threads cooperatively. Here, we assume that
each IUT is given as a program (object coeds). By using the method in [8], we can
convert a given IUT into a thread as shown in Fig.5. In Fig.5, we add the load-control
thread (load controller) as the cooperative thread. If we want to make the output timing
later, the tester asks the load-controller to use CPU time more. As the result, the IUT
cannot use enough CPU time and the output timing from the IUT becomes late. By
adjusting CPU time used by the load-controller, we can make the output timing of the
IUT earlier or later intentionally.

IUT load
controller

tester

: thread

Fig. 5. Testing Environment

Here, we will apply the following functional testing method to the IUT. First, we
generate a set of test sequences for functional testing. Then, we derive time intervals
which make the given test sequences executable by using the method described in the
next sub-section. We give the inputs to the IUT at some timing in the derived time inter-
vals and observe the outputs from the IUT. If the outputs are observed at an earlier time
than the expected time intervals, then we make the load-conroller consume much CPU
time so that we can observe the outputs at some timing in the derived time intervals.
We repeat this functional testing process and give inputs at different timing as shown
in Fig.4. If we can observe the corresponding outputs at adequate timing for several
times by adjusting the CPU load for the load-controller, we conclude that we succeed
the functional testing. If we cannot observe the I/O events at adequate timing even if
we repeat the above process, then we conclude that there may have some errors for the
implementation of the function to be tested.

4.2 Method for Deriving I /O Timing Intervals

In the proposed method, first, we generate test sequences corresponding to the functions
that we want to test and transform them into symbolic traces, which reflect the changes
of the values of variables. Based on the scheduling method in [4], we derive executable
time intervals for the I/O events in the given traces if they exist.

When we test a synchronized output between audio and video for the media syn-
chronization protocol in Fig.1, we generate test sequences which make the synchro-
nized event “synchronizedplay!” executable for three modules (a), (b) and (c), and
transform them into symbolic traces. Since module (c) in Fig.1 controls only the syn-
chronization by counting the number of repetation and no time constraint is imposed
on the events in it, we omit module (c) from the discussion below. Here, we con-
sider two symbolic traces in Fig.6. These are traces that synchronizedplay! is executed
synchronously in modules (a) and (b) in Fig.1 when they repeat the cyclic transitions
s0→ s1→ s2→ s3→ s0 for 4 times and 2 times, respectively.

Hereafter, we propose a method for deriving I/O timing intervals of given test se-
quences.

sequence in module (a) sequence in module (b)
audio receive?@ta1 video receive?@tv1
audiodecoderequest!@ta2 video decoderequest!@tv2
audiodecoderespond?@ta3 video decoderespond?@tv3
audioplay!@ta0 video play!@tv0
audio receive?@t′a1 video receive?@t′v1
audiodecoderequest!@t′a2 video decoderequest!@t′v2· · · video decoderespond?@t′v3
audiodecoderespond?@t′′′a3 synchronizedplay!@t′v0
synchronizedplay!@t′′′a0 video receive?@t′′v1
audio receive?@t′′′′a1

Fig. 6. Test Sequences for Synchronized Events (Symbolic Traces)

The condition for each transitiona@ta is supposed to be represented as a logical
product of linear inequalities consisting of variableta representing execution time ofa
and variables used in the preceding events. Therefore, the conditions are represented
as logical products of expressions whose forms areα ≤ ta or ta ≤ β. In order to de-
rive the I/O event intervals that make the two traces executable, we give the following
constraints.

(1) Each event is never executed ahead of the preceding events. So, the expressions
below should be satisfied. We add them as the constraint.

ta1 ≤ ta2 ≤ ta3 ≤ ta0 ≤ t′a1 ≤ . . . ≤ t′′′a0 ≤ t′′′′a1
tv1 ≤ tv2 ≤ tv3 ≤ tv0 ≤ t′v1 ≤ . . . ≤ t′v0 ≤ t′′v1

(2) We introduce two new variablestxmin andtxmaxthat represent the earliest and latest
executable time oftx, respectively, and replace the original constraintα ≤ tx ≤ β
with α ≤ txmin ≤ txmax≤ β.

As for the timing of the synchronized event (synchronizedplay! in the sequences
in Fig.6), we replace the execution timet′′′a0 andt′v0 of two synchronized events with
the same variable pair (t0min, t0max). Then the constraint on synchronizedplay! in

the audio module is replaced [t′′′a3 + 3 ≤ t0min ≤ t0max ≤ t′′′a3 + 5], and that in the
video module is replaced [t′v3 + 6 ≤ t0min ≤ t0max≤ t′v3 + 10] .

(3) As the objective function for solving the above linear programming problem, we
give the weighted sum of time intervalsΣwi(timax− timin) , where adequate weights
(wi) are given. If we want to derive wider time intervals for output events, we can
give larger weightswi to the output time intervals.

(4) We solve the linear programming problem.
Thus, the solution tells executable time intervals for each event. For each output

event, we judge that the rest of the test sequence is executable if the output is observed
in the derived time interval. On the other hand, we decide that given test sequences are
not executable if we cannot obtain a solution.

5 Example

We apply our method to two test sequences for checking the correctness of the functions
of synchronized events and timeout handling on the media synchronization protocol
shown in Fig.1.

5.1 Functional Test Sequences for Synchronized Events

We apply our method to two symbolic traces and obtain the following solutions2.

2.4≤ ta1≤2.8 3.8≤ ta2≤5.4 9.4≤ ta3≤9.8 12.8≤ ta0≤14.4
16.4≤ t′a1≤16.8 17.8≤ t′a2≤19.4 23.4≤ t′a3≤23.8 26.8≤ t′a0≤28.4
30.4≤ t′′a1≤30.8 31.8≤ t′′a2≤33.4 37.4≤ t′′a3≤37.8 40.8≤ t′′a0≤42.4
44.4≤ t′′′a1≤44.8 45.8≤ t′′′a2≤47.4 51.4≤ t′′′a3≤51.8 55≤ t0≤56.4
58.4≤ t′′′′a1 ≤59

8≤ tv1≤9 10≤ tv2≤11 20≤ tv3≤21 27≤ tv0≤28.4
36.4≤ t′v1≤37 38≤ t′v2≤39.4 48.4≤ t′v3≤49 55≤ t0≤56.4
64.4≤ t′′v1≤65

If we give inputs to IUT at adequate timing in obtained intervals and observe outputs
in obtained intervals, the sequence is executable. So we can check the behavior of IUT
and test whether IUT synchronizes correctly.

5.2 Functional Test Sequences for Timeout Handling

We consider that if a synchronized event is executed correctly after executing a time-
out event, the timeout event (timeout handling) is also executed correctly. We apply our
method to the sequences which are obtained by replacing a part of the sequence on mod-
ule (a) shown in Fig.6 (third appearance of audioreceive?@t′′a1, audiodecoderequest!@t′′a2,
audiodecoderespond?@t′′a3) with timeout handling (audioloss!@t′′a3). The result is as
follows.

2 If we want to derive wider intervals for output events, the interval widths for some input events
may become zero. However, it is practically difficult to execute input events at exact tim-
ing. To cope with the problem, we specify the minimum interval width for each input event.
In this example, for input events audioreceive?, audiodecoderespond?, videoreceive? and
video decoderespond?, we specify the minimum widths 0.4,0.3,0.6 and 0.5, respectively.

2≤ ta1≤2.4 3.4≤ ta2≤5 9≤ ta3≤9.4 12.4≤ ta0≤14
16≤ t′a1≤16.4 17.4≤ t′a2≤19 23≤ t′a3≤23.3 26.3≤ t′a0≤28

37≤ t′′a3≤38 41≤ t′′a0≤42
44≤ t′′′a1≤45 46≤ t′′′a2≤47 51≤ t′′′a3≤52 55≤ t0≤56
58≤ t′′′′a1 ≤59

8≤ tv1≤9 10≤ tv2≤11 20≤ tv3≤21 27≤ tv0≤28.4
36.4≤ t′v1≤37 38≤ t′v2≤39.4 48.4≤ t′v3≤49 55≤ t0≤56
64≤ t′′v1≤65

6 Conclusion

In this paper, we specify a media synchronization protocol as a model in which multiple
timed I/O automata work in parallel and cooperatively. Then, we propose a method
for functional testing on the model. We also propose a technique for deriving wide
executable time intervals of I/O events in a given set of test sequences by using linear
programming techniques. As the future work, we are planning to develop an actual
environment for functional testing with the multi-threaded programming method in [8].

References

1. R. Alur and D. L. Dill : “A theory of timed automata”, Theoretical Computer Science, Vol.
126, pp.183-235 (1994).

2. T. Higashino, A. Nakata, K. Taniguchi and A. R. Cavalli : “Generating test cases for a timed
I/O automaton model”, Proc. of 12th IFIP Workshop on Testing of Communicating Systems
(IWTCS’99), pp.197-214 (Sept. 1999).

3. C. M. Huang and C. Wang : “Synchronization for Interactive Multimedia Presentations”,
IEEE MULTIMEDIA, Vol. 5, No. 4, pp.44-62 (Oct.-Nov. 1998).

4. H. Katagiri, M. Kirimura, K. Yasumoto and T. Higashino and K. Taniguchi : “Hardware
Implementation of Concurrent Periodic EFSMs”, Proc. of Joint International Conference on
13th Formal Description Techniques and 20th Protocol Specification, Testing, and Verifica-
tion (FORTE/PSTV2000), pp.285-300 (Oct. 2000).

5. D. Lee and M. Yannakakis : “Principles and Methods of Testing Finite State Machines - A
Survey”, Proc. of the IEEE, Vol. 84, No. 8 (1996).

6. T. D. C. Little and A. Ghafoor : “Synchronization and storage models for multimedia ob-
jects”, IEEE Journal of Selected Areas in Communications, Vol. 8, No. 3, pp.413-427 (Apr.
1990).

7. V. Misic, S. T. Chanson and S. C. Cheung : “Towards a Framework for Testing Distributed
Multimedia Software Systems”, Proc. International Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE98) (Apr. 1998).

8. K. Abe, T. Matsuura, K. Yasumoto and T. Higashino : “A Method to Execute Existing Pro-
gram Codes in Multi-theread Environments and Its Implementation” Journal of Information
Processing Society of Japan, Vol. 41, No. 9, pp.2603-2613 (Sep. 2000) (In Japanese).

