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Abstract—These years Internet of Things (IoT) has been paid
much attention to and the importance of lightweight and efficient
authentication protocols has been increasing.

In this paper, we propose a novel and flexible hash chain
construction, hash chain aggregation (HCA), and a scheme
to establish a common key for two users using HCA. Our
proposed scheme has the following significant advantages: (1)
cryptographic primitives for our scheme are hash functions only
and the resultant scheme is efficient, (2) our scheme is based on
a totally new hash chain construction (HCA), and (3) what two
users generating a common secret key must know is only the
identity (ID) of the other. No communication is required except
for in the initial setting. That is, our scheme is actually an ID-
based authentication protocol.

I. INTRODUCTION

These years Internet of Things (IoT) [1] has been paid much
attention to. We can consider IoT to be a network environment
that connects various resource-constrained devices. Such de-
vices have limited computational and storage capabilities and
often suffer from the buttery consumption problem. However,
because they are interconnected through a network, security
is of critical concern. Therefore the importance of lightweight
and efficient authentication protocols has been increasing.

One of the most promising lightweight cryptographic prim-
itive is a hash function. A hash function is a one-way and
collision-resistant function [2] and can efficiently be com-
puted. Furthermore, a hash chain is a sequence of hash values,
each of which is generated by successively applying a hash
function to an input value, which is called a seed. Hash
chains are important applications of a hash function and are
building blocks of many security protocols [3]–[6]. However,
unfortunately, previous protocols use hash chains in a rather
straightforward manner and thus can not fully exploit the
potential of hash chains.

Therefore, in this paper, first we shall propose a novel
and flexible hash chain construction, hash chain aggregation
(HCA). Second, we propose a scheme to establish a common
secret key for two users using HCA. Our proposed scheme
has the following significant advantages: (1) cryptographic
primitives for our scheme are hash functions only and the
resultant scheme is efficient, (2) our scheme is based on a
totally new hash chain construction (HCA), and (3) what two
users generating a common key must know is only the identity
(ID) of the other. No communication is required except for in

the initial setting. That is, our scheme is actually an ID-based
authentication protocol.

A hash chain construction proposed in this paper is inter-
esting in itself. We believe that it opens up a new vista of
research in hash chain constructions.

Finally, we discuss security and performance of our scheme
in detail in this paper.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. We propose a new hash chain
construction and a key generation scheme with it in Section III.
In Section IV we evaluate security and performance of our
scheme in detail. Finally Section V concludes the paper.

II. RELATED WORK

This section discusses some important security protocols
with hash chains.

Lamport proposed a simple authentication protocol using
hash chains, which is also known as a one time password
protocol [4]. The advantage of Lamport’s protocol is that each
password (a hash value) is used only once and there is no
problem even if it is exposed. However, the protocol is mainly
utilized for authentication between a server and users. It is
not appropriate for mutual authentication between a pair of
ordinary users.

TESLA is one of the most famous protocols with hash
chains [5]. TESLA employs hash chains to develop an effi-
cient broadcast authentication protocol and is advantageous in
terms of computational cost and resistance to a packet loss.
However, TESLA is too complicated when a simple mutual
authentication protocol is needed.

Joye and Yen generalize the idea of hash chains to propose
one-way cross trees (OWCT) [3]. OWCT generates indepen-
dent secret values by applying hash functions to each element
of a sequence of hash values in a multidimensional manner.
Although OWCT has various applications such as key escrow,
it is not known how to establish a common secret of two users
using OWCT.

III. OUR SCHEME

In this section we shall propose an authentication scheme
(a common key generation scheme for two users) using a new
hash chain construction.



To begin with, let us define a hash chain. With respect to
a hash function h and an input value (seed) s, we define
h1(s) := h(s) and hi(s) := h(hi−1(s)) (i ≥ 2). For an
integer n, suppose that (i1, i2, ..., in) is a permutation of a
set {1, 2, ..., n}. Now a (general) hash chain of length n with
seed s is defined to be:

(v1, v2, ..., vn) where vj = hij (s), 1 ≤ j ≤ n . (1)

Note that n hash values are first computed as h(s), h2(s), . . .,
hn(s) in this order. After that, the order of the hash values is
rearranged to compose the sequence Eq. (1).

A. Basic Idea

This section demonstrates the basic idea behind our pro-
posed scheme.

In our model there are two kinds of players involved: one
Key Distribution Center (KDC) and N users. KDC is supposed
to be trusted and there is a secure channel between KDC and
every user.

Now in order to understand the basic idea, for an example,
consider a situation where two users are about to generate their
common secret key using hash chains.

It would be impossible to invent a scheme that establishes a
common key of arbitrary two users using only one hash chain.
Hence the first step toward the simplest solution would be that
KDC prepares “two way hash chains” C1 and C2. For exam-
ple, suppose that N is five, s1 and s2 are seeds, and h is a hash
function. Then, we have C1 = (h(s1), h

2(s1), . . . , h
5(s1)) and

C2 = (h5(s2), h
4(s2), . . . , h(s2)). Next, after KDC computes

C1 and C2, it sends (hi(s1), h
6−i(s2)) to user i via her

secure channel (i = 1, 2, ..., 5). As a result, both user i and
j (without loss of generality, here we assume i < j) either
have, or can calculate, hj(s1) and h6−i(s2), from their own
hash values received from KDC. Therefore when user i and j
want to make a common secret key for secure communication,
they only have to compute F (hj(s1), h

6−i(s2)) as the com-
mon key with a one-way function F . Notice that to obtain
F (hj(s1), h

6−i(s2)), the two users need no communication
and what they have to know is only the ID of the other.

Now consider the case where user 2 and 4 want to authenti-
cate each other for an example. Because KDC sends (h2(s1),
h4(s2)) and (h4(s1), h2(s2)) to user 2 and 4, respectively,
user 2 and 4 can generate

K2,4 := F (h4(s1), h
4(s2)) (2)

as their common key.

B. Improvement on the Basic Idea

In the basic scheme presented in Section III-A, if an attacker
does not have any hash values that are distributed by KDC,
then he cannot derive the common key of any two users.
Therefore in order to consider security of the basic scheme,
let us assume that an attacker is an insider, i.e., that he is one
of N users. In what follows in this section, let an attacker be
user a (1 ≤ a ≤ N ).

When a < i or j < a, user a cannot obtain the common
key Ki,j of user i and j due to one-wayness of of hash
function h. To see this, consider again the example scenario
in Section III-A, where N = 5, i = 2, and j = 4. Suppose
that attacker (user) a = 1. Because user 1, who received
(h(s1), h5(s2)) from KDC, cannot compute h4(s2) due to
one-wayness of h, he cannot compute the common key K2,4

(Eq.(2)) of user 2 and 4. Similarly, if attacker (user) a = 5,
who has (h5(s1), h(s2)), then user 5 cannot generate K2,4

because he cannot generate h4(s1).
However, if i < a < j, then user a can compute Ki,j

indeed. In the example above, if attacker (user) a = 3, then
user 3 has hash values (h3(s1), h

3(s2)) and from them he
can compute both h4(s1) and h4(s2) and then K2,4. This is
definitely undesirable.

Therefore we consider new hash chains to exclude user a
(i < a < j) when user i and j compute their common key.
For that purpose, we shall introduce “non-consecutive” hash
chains C3 and C4. Although we give the formal definitions of
C3 and C4 in Section III-C, here in order to intuitively grasp
the idea of our chains, let us consider the case N = 5 as in
Section III-A.

Regarding some seeds s3 and s4, KDC computes h(s3),
h2(s3), ..., h5(s3) and h(s4), h2(s4), ..., h5(s4) in order. Then
KDC rearranges the hash values and forms the following hash
chains C3, C4:

C3 = (h3(s3), h
4(s3), h

5(s3), h(s3), h
2(s3)), (3)

C4 = (h3(s4), h
2(s4), h(s4), h

5(s4), h
4(s4)) . (4)

For 1 ≤ i ≤ N (= 5), we can express each hash value of C3,
C4 as

h((i−⌈N/2⌉−1) mod N)+1(s3), and

h((⌈N/2⌉−i) mod N)+1(s4),

respectively.
Recall that in previous work, exponents of a hash function in

a hash chain strictly increase (or decrease). On the other hand,
as we can see from Eq. (3), we cut an exponent-increasing
hash chain (say C1) in halves and exchange the order of the
halves. We can consider the case of Eq. (4) similarly. It should
be emphasized that this way of constructing hash chains is
completely new and makes it possible to devise lightweight
and efficient key generation algorithms as shown later.

Putting it altogether, our improved basic scheme is as
follows. KDC forms hash chains C1, C2, C3, and C4 and
securely distributes to user i (1 ≤ i ≤ N ) the four hash values
given below:

hi(s1), h
N−i+1(s2), h

((i−⌈N/2⌉−1) mod N)+1(s3),

h((⌈N/2⌉−i) mod N)+1(s4) .

See also Fig. 1.
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Fig. 1. Hash Chains C1, C2, C3, C4 (N = 5)

When user i and j (i < j) want to have their common secret
key Ki,j , they compute:

hj(s1), h
N−i+1(s2), h

((i−⌈N/2⌉−1) mod N)+1(s3),

h((⌈N/2⌉−j) mod N)+1(s4) (5)

from their own hash values and get Ki,j by feeding these
values into a one way function F .

Now consider the case N = 5 again. In the case, user 2,
3, and 4 receive from KDC {h2(s1), h4(s2), h4(s3), h2(s4)},
{h3(s1), h3(s2), h5(s3), h(s4)}, and {h4(s1), h2(s2), h(s3),
h5(s4)}, respectively. Then user 2 and 4 can compute their
common key as

F (h4(s1), h
4(s2), h

4(s3), h
5(s4)) . (6)

User 3 cannot obtain Eq. (6) because he cannot compute
h4(s3) due to one-wayness of hash function h.

It should be now easy to verify that in our improved basic
scheme, with respect to almost all combinations of i and j
(1 ≤ i ≤ 3 < j ≤ 5 = N ) 1, no user other than user i and j
cannot generate the common key of user i and j.

C. Our Hash Chain Construction

On the basis of the discussion given in Sections III-A and
III-B, we shall propose a new way of hash chain constructions
in this section.

Hereinafter for brevity, we assume that N = 2m for some
integer m (≥ 2). Moreover for a sequence Q = (q1, q2, . . .,
qj), i-th element qi of Q is denoted by Q[i] (1 ≤ i ≤ j).

1Key generation by Eq. (5) fails in the four cases of total 10 (=
(5
2

)
): (i,

j) = (i) (1, 2), (ii) (1, 3), (iii) (2, 3), and (iv) (4, 5), respectively. However,
with a little thought we see that the actual failure is the case (ii) (of total
ten cases) only. Of course our final scheme presented in Section III-E has no
such a flaw.

1) Basic Hash Chain: First, we introduce four basic hash
chains (Type I, II, III, IV hash chains) below to define our
proposed hash chain construction. For some integer b (2 ≤ b ≤
m), let the length ℓ of the basic hash chains be 2b. Furthermore
in the definitions below we suppose that 1 ≤ i ≤ ℓ and s
is a seed. Hereafter throughout the paper, h denotes a hash
function.

• Type I hash chain CI
ℓ (s)

CI
ℓ (s) := (v1, v2, . . . , vℓ) where vi = hi(s)

• Type II hash chain CII
ℓ (s)

CII
ℓ (s) := (v1, v2, . . . , vℓ) where vi = hℓ−i+1(s)

• Type III hash chain CIII
ℓ (s)

CIII
ℓ (s) := (v1, v2, . . . , vℓ)

where vi = h((i−ℓ/2−1) mod ℓ)+1(s)

• Type IV hash chain CIV
ℓ (s)

CIV
ℓ (s) := (v1, v2, . . . , vℓ)

where vi = h((ℓ/2−i) mod ℓ)+1(s)

2) Hash Chain List: By the definitions in Section III-C1,
we can now define a hash chain list (HCL) L(τ, k, s1, ..., sk)
as follows:

L(τ, k, s1, ..., sk)
:= (Cτ

N/k(s1), C
τ
N/k(s2), ..., C

τ
N/k(sk)) (7)

where k = 2f for some integer f (0 ≤ f ≤ m − 2), τ ∈ {I ,
II , III , IV }, and s1, ..., sk are distinct seeds.

Hereinafter for simplicity we sometimes omit the input vari-
ables τ, k, s1, ..., sk of L(τ, k, s1, ..., sk) and merely represent
it as L. Moreover, with regard to hash chain list L, the number
of hash chains in L is denoted by kL (= k in Eq. (7)).

3) Hash Chain Aggregation: Now it is the time that we
shall propose a hash chain aggregation. A hash chain aggre-
gation (HCA) is simply a list of hash chain lists:

A := (L1,L2, ...,Lr) (8)

where Li is defined by Eq. (7) (1 ≤ i ≤ r).
4) Hash Values for Each User: In our scheme, KDC uses

a hash chain aggregation (HCA) to distribute a set of hash
values to user i (1 ≤ i ≤ N ). Let us discuss what hash values
are sent to users by KDC.

To begin with, consider an HCA A and arbitrary HCL L
(∈ A) (see also Eq. (8)). It is assumed that kL = 2f . Then,
L has kL basic hash chains of the same type and the length
of each chain in L is equally N/kL (= 2m−f ). It follows that
L has N distinct hash values in total and can assign one hash
value to user i (1 ≤ i ≤ N ) from one basic hash chain in L.
Given L, we can determine the hash value and the basic hash
chain for user i in the following manner.



Assume that one hash value of d-th basic hash chain in L
is assigned to user i. d must satisfy the following inequality:

N

kL
(d− 1) + 1 ≤ i ≤ N

kL
d (1 ≤ d ≤ kL) . (9)

Note that given L and i, the value of d that satisfies Eq. (9) is
uniquely determined. We refer to the value as α(L, i) . Now
we know that the basic hash chain that contains the hash value
for user i in L is represented by L[α(L, i)] .

From the discussion above, in L, we find that the hash value
assigned to user i is obtained by:

(L[α(L, i)])
[
i− N

kL
· (α(L, i)− 1)

]
. (10)

Furthermore, the set of hash values assigned to user i are
given by V (A, i), which is defined as follows:

V (A, i) :={
(L[α(L, i)])

[
i− N

kL
· (α(L, i)− 1)

] ∣∣∣∣ L ∈ A
}

.

(11)

KDC sends V (A, i) to user i via her secure channel. She stores
them secretly.

Finally, with respect to A, we introduce function W to
express the set of basic hash chains that contain the hash values
of user i. W is defined as:

W (A, i) := {L[α(L, i)] | L ∈ A} . (12)

D. Proposed Hash Chain Aggregation

In this section in order to realize lightweight and efficient
mutual authentication, we shall propose our HCA, HCA, as
follows. Recall that N = 2m.

HCA := (L(1),L(2), . . . ,L(2m−1),L(2m)) (13)

where L(1) = (CI
N (s1)) and L(2) = (CII

N (s2)). When 3 ≤ i ≤
2m, L(i) is defined as follows. We assume that 2 ≤ j ≤ m
and sx, sy,z denote distinct seeds for integers x, y, z.

1) If i = 2j − 1, then

L(2j−1) := (CIII
2m−j+2(s2j−1,1), C

III
2m−j+2(s2j−1,2),

· · · , CIII
2m−j+2(s2j−1,2j−2)) .

2) If i = 2j, then

L(2j) := (CIV
2m−j+2(s2j,1), C

IV
2m−j+2(s2j,2),

· · · , CIV
2m−j+2(s2j,2j−2)) .

In particular, we have L(3) = (CIII
N (s3,1)) and L(4) =

(CIV
N (s4,1)). In the rest of this paper, for simplicity we write

s3,1 and s4,1 as s3 and s4, respectively.
Now in order to see how HCA is constructed, let us consider

the case N = 8 (m = 3). In the case we obtain HCA = (L(1),
L(2), . . ., L(5), L(6)), which is depicted in Fig. 2. It is easy to
see L(5) = (CIII

4 (s5,1), CIII
4 (s5,2)) and kL(5)

= 2. Similarly,
L(6) = (CIV

4 (s6,1), CIV
4 (s6,2)) and kL(6)

= 2. Hence, for
example, regarding user 6, we have α(L(5), 6) = α(L(6),

6) = 2 and L(5)[2] = CIII
4 (s5,2) and L(6)[2] = CIV

4 (s6,2).
It follows that W (HCA, 6) = {CI

8 (s1), C
II
8 (s2), CIII

8 (s3),
CIV

8 (s4), CIII
4 (s5,2), CIV

4 (s6,2)}. V (HCA, 6) can be com-
puted from Eq. (11). For example, (L(5)[2])[6−(8/2) ·(2−1)]
= CIII

4 (s5,2)[2] = h4(s5,2). Finally we have V (HCA, 6) =
{h6(s1), h3(s2), h2(s3), h7(s4), h4(s5,2), h(s6,2)}.

E. Key Generation using HCA
Our proposed common key generation scheme for user i, j

(1 ≤ i < j ≤ N ) is defined in this section.
1) If i+1 = j, then F (CI

N [j], CII
N [i]) is the common key.

2) Otherwise, first note that there exist a set of integers
(2 ≤) w1 < w2 < · · · < wu (≤ m) such that we
can uniquely write W (HCA, i) ∩ W (HCA, j) in the
following way:

W (HCA, i) ∩W (HCA, j) =

{CI
N (s1), C

II
N (s2),

L(2w1−1)[α(L(2w1−1), i)],L(2w1)[α(L(2w1), i)],

...
L(2wu−1)[α(L(2wu−1), i)],L(2wu)[α(L(2wu), i)]}

where α(L(2w1−1), i) = α(L(2w1−1), j) = α(L(2w1), i)
= α(L(2w1), j), · · · , α(L(2wu−1), i) = α(L(2wu−1), j)
= α(L(2wu), i) = α(L(2wu), j). It should be noted that
L(2wu−1)[α(L(2wu−1), i)] and L(2wu)[α(L(2wu), i)] are
the shortest basic hash chains that contain both i and j.
Now both user i and j can compute the following four
hash values:
ν1 := CI

N (s1)[j],

ν2 := CII
N (s2)[i],

ν3 := (L(2wu−1)[α(L(2wu−1), i)])[i− βi,2wu−1],

ν4 := (L(2wu)[α(L(2wu), i)])[j − βj,2wu ]

(14)

where βx,y = (N · (α(L(y), x)− 1))/kL(y)
.

The common key Ki,j can be computed as:

Ki,j := F (ν1, ν2, ν3, ν4) . (15)

F. Example
To demonstrate how our scheme works using HCA, we

consider the case where user 5 and 7 are going to generate
their common secret key when N = 8. See Fig. 2.

We find that W (HCA, 5) = {CI
8 (s1), C

II
8 (s2), CIII

8 (s3),
CIV

8 (s4), CIII
4 (s5,2), CIV

4 (s6,2)} and W (HCA, 7) =
{CI

8 (s1), CII
8 (s2), CIII

8 (s3), CIV
8 (s4), CIII

4 (s5,2),
CIV

4 (s6,2)}. Therefore W (HCA, 5)∩W (HCA, 7) = {CI
8 (s1),

CII
8 (s2), CIII

8 (s3), CIV
8 (s4), CIII

4 (s5,2), CIV
4 (s6,2)} and

w1 = 2, wu = 3 (i.e, u = 2), α(L(3), 5) = α(L(3), 7) =
α(L(4), 5) = α(L(4), 7) = 1, α(L(5), 5) = α(L(5), 7) =
α(L(6), 5) = α(L(6), 7) = 2, β5,5 = β7,6 = 4. Hence

ν1 = CI
8 (s1)[7] = h7(s1),

ν2 = CII
8 (s2)[5] = h4(s2),

ν3 = (L(5)[2])[5− 4] = CIII
4 (s5,2)[1] = h3(s5,2),

ν4 = (L(6)[2])[7− 4] = CIV
4 (s6,2)[3] = h4(s6,2) .
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Fig. 2. Our HCA (N = 8)

Notice that user 5 and 7 can calculate K5,7 from their own
hash values without any communication. Furthermore, no user
other than user 5 and 7 can obtain K5,7. Security of our
scheme is evaluated in detail in Section IV-A.

IV. EVALUATION

This section evaluates security and performance of our
scheme in detail.

A. Security Evaluation
In our scheme, KDC distributes a set of hash values to

each user via her secure channel and she computes her keys
from her own hash values with hash function h and one way
function F . Due to one-wayness of h and F , an attacker other
than N users cannot derive such keys. Therefore, if an attacker
succeeds in computing some keys in our scheme, then he must
have obtained some hash values in some way or he must be
among N users. In either case, we can suppose that some
user is actually an attacker when we evaluate security of our
scheme.

1) Attack by a Single Attacker: If there exists only one
attacker, then we can prove Theorem 1.

Theorem 1. Suppose that there exists only one attacker. For
arbitrary i and j (1 ≤ i < j ≤ N ), if the attacker is neither

user i nor j, then he cannot compute the common key Ki,j of
user i and j.

Proof. From the discussion above, when we evaluate security
of our scheme, we can suppose that user a (1 ≤ a ≤ N ) is the
attacker. Now we know that in order to compute Ki,j , from
Eq. (14), we must have at least CI

N (s1)[j] and CII
N (s2)[i].

However, if a < i, then user a (the attacker) cannot obtain
CII

N (s2)[i] due to one-wayness of h. Similarly, if j < a, then
user a cannot obtain CI

N (s1)[j].
Next we assume that i < a < j, which implies that i +

1 ̸= j. Then user a can compute CI
N (s1)[j] and CII

N (s2)[i].
However, user a cannot generate just one of ν3 and ν4 in
Eq. (14) (however, he can actually generate the other). We
prove this fact below.

First from Eq. (14), with respect to L(2wu−1) and L(2wu),
we can write

L(2wu−1) = L(III, k, s2wu−1,1, ..., s2wu−1,k)

L(2wu) = L(IV, k, s2wu,1, ..., s2wu,k)

where k = kL(2wu−1)
= kL(2wu)

= 2wu−2. Furthermore, as
we mentioned in Section III-E, we know α(L(2wu−1), i) =
α(L(2wu−1), j) = α(L(2wu), i) = α(L(2wu), j), the value of
which is simply denoted by α.



Now we split the range from i to j (not including i and
j) into two smaller ones and consider which range a is in.
Note that from the definition of wu and i+1 ̸= j, we see that
i ≤ N(α− 1)/k +N/2k and N(α− 1)/k +N/2k + 1 ≤ j.

1) If i < a ≤ N(α − 1)/k + N/2k, then user a cannot
compute ν3 and in turn cannot compute Ki,j .

2) If N(α− 1)/k+N/2k+1 ≤ a < j, then user a cannot
compute ν4.

Thus the theorem is proved.

2) Collusion Attack: If two attackers collude to attack our
scheme, then we can prove Theorem 2.

Theorem 2. Let α and k be defined in the same way as in
Theorem 1. Furthermore, for some integers i, j, a1, a2, let us
suppose that 1 ≤ i < a1 ≤ N(α− 1)/k +N/2k and N(α−
1)/k + N/2k + 1 ≤ a2 < j ≤ N . Then user a1 and a2 in
collusion can compute the common key Ki,j of user i and j.

Proof. First, see Eq. (14). Both user a1 and a2 can compute
ν1 and ν2. Furthermore, user a1 can compute ν4 (but not ν3).
User a2 can compute ν3 (but not ν4). Therefore, if user a1
and a2 cooperate, then they can compute Ki,j .

As a consequence of Theorem 2, our scheme should be used
in moderately trusted environments.

B. Performance Evaluation

We discuss performance of our scheme in detail in this
section. Performance of our scheme is discussed in terms
of the number of hash values that each user should have
(Section IV-B1) and complexity (SectionIV-B2). Furthermore,
in Section IV-B3 we discuss the situations where the number
of each user’s hash values is less than four.

1) The Number of Hash Values Stored By Each User: If
the number of users is N , then in our scheme the number of
hash values that each user must store securely is

2⌈log2 N⌉ .

On the other hand, in a naive mutual authentication protocol
using a symmetric cipher, each user would possess N − 1
secret keys. Thus our scheme is highly efficient in terms of
the number of each user’s hash values.

2) Complexity: We evaluate the number of hash function
computations when user i and j (1 ≤ i < j ≤ N ) generate
their common key Ki,j . See Eq. (14). Let us consider the
number of hash computations that user i does for the key
generation (almost the same discussion applies to the case of
user j).

User i has ν2 and ν3 and no computation is necessary
to derive them. In order to obtain ν1, user i computes
hash function h (j − i) times. Similarly, user i computes h
((i − j) mod (N/k)) times to have ν4, where k = 2wu−2.
Therefore, except for the computation of F , the number of
user i’s hash computations when she generates Ki,j can be
approximately estimated as

N

3
+

N

k
. (16)

Hence it is expected that the larger N becomes, the larger the
complexity of our scheme becomes.

However, modern hash functions, say, SHA-2 or SHA-3,
are known to be remarkably fast, especially in hardware im-
plementations [7]. Furthermore, we can compute hash chains
efficiently by using the well-known techniques developed by
Coppersmith and Jakobsson [8].

Therefore we can expect our scheme to work well in
practical environments.

3) On the Number of Hash Values for Key Generation: In
order not for users other than user i and j (1 ≤ i < j ≤ N )
to be able to compute the common key Ki,j of user i and
j, we need only four hash values (ν1, ν2, ν3, ν4) in Eq. (14).
However, depending on i and j, we have the cases where less
number of hash values are enough for the key generation.

Below α and k are defined in the same way as in Theorem 1.
Moreover in the examples below, N = 8 (see Fig. 2).

1) i+ 1 = j or adjacent users in Type III and IV chains:
When i+ 1 = j, two hash values ν1 and ν2 suffice.
Moreover, because user i = N(α− 1)k + 1 is adjacent
to user j = Nα/k in Type III and IV hash chains, in
the case, two hash values ν3 and ν4 suffice.
Example: if i = 1 and j = 8, then ν3 = CIII

8 (s3)[1] =
h5(s3), ν4 = CIV

8 (s4)[8] = h5(s4).
2) i = N(α− 1)/k +N/2k, j = Nα/k:

Two hash values ν2 and ν4 suffice.
Example: if i = 4 and j = 8, then ν2 = CII

8 (s2)[4] =
h5(s2), ν4 = CIV

8 (s4)[8] = h5(s4).
3) i = N(α− 1)/k + 1, j = N(α− 1)/k +N/2k + 1:

Two hash values ν1 and ν3 suffice.
Example: if i = 5 and j = 7, then ν1 = CI

8 (s1)[7] =
h7(s1), ν3 = CIII

4 (s5,2)[1] = h3(s5,2).
4) i = N(α − 1)/k +N/2k, N(α − 1)/k +N/2k + 1 <

j < Nα/k:
Three hash values ν1, ν2, and ν4 suffice.
Example: if i = 4, j = 6, then ν1 = CI

8 (s1)[6] =
h6(s1), ν2 = CII

8 (s2)[4] = h5(s2), ν4 = CIV
8 (s4)[6] =

h7(s4).
5) 1 < i < N(α−1)/k+N/2k, j = N(α−1)/k+N/2k+

1:
Three hash values ν1, ν2, and ν3 suffice.
Example: if i = 3, j = 5, then ν1 = CI

8 (s1)[5] =
h5(s1), ν2 = CII

8 (s2)[3] = h6(s2), ν3 = CIII
8 (s3)[3] =

h7(s3).

V. CONCLUSION

In this paper, we proposed a novel and flexible hash chain
construction, hash chain aggregation (HCA), and a scheme
to establish a common key for two users using HCA. Our
proposed scheme has the following significant advantages: (1)
cryptographic primitives for our scheme are hash functions
only and the resultant scheme is efficient, (2) our scheme is
based on a totally new hash chain construction (HCA), and (3)
what two users generating a common secret key must know
is only the identity (ID) of the other. No communication is



required except for in the initial setting. That is, our scheme
is actually an ID-based authentication protocol.

A hash chain construction proposed in this paper is inter-
esting in itself. We believe that it opens up a new vista of
research on hash chain constructions.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 15K00189 and Japan Science and Technology Agency
(JST), Infrastructure Development for Promoting International
S&T Cooperation.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles
and Protocols. Chapman and Hall/CRC, 2007.

[3] M. Joye and S. Yen, “One-way cross-trees and their applications,” in
Public Key Cryptography (PKC), ser. Lecture Notes in Computer Science,
vol. 2274. Springer-Verlag, 2002, pp. 346–356.

[4] L. Lamport, “Password authentication with insecure communication,”
vol. 24, no. 11, pp. 770–772, Nov. 1981.

[5] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proceedings of
the IEEE Symposium on Security and Privacy, May 2000, pp. 56–73.

[6] R. Rivest and A. Shamir, “PayWord and MicroMint: Two simple micro-
payment schemes,” in Security Protocols, ser. Lecture Notes in Computer
Science, vol. 1189. Springer-Verlag, 1997, pp. 69–87.

[7] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and com-
prehensive performance evaluation of 14 second round SHA-3 ASIC
implementations,” NIST 2nd SHA-3 Candidate Conference, Aug. 2010.

[8] D. Coppersmith and M. Jakobsson, “Almost optimal hash sequence
traversal,” in Proceesings of 6th International Conference on Financial
Cryptography (FC 2002), ser. Lecture Notes in Computer Science, vol.
2357. Springer-Verlag, 2002, pp. 102–119.


