A new authorization model and
its mechanism using service
paths in open distributed
environments

Masakazu Soshi and Mamoru Maekawa

Graduate School of Information Systems, University of FElectro-
Communaications

1-5-1 Chofugaoka, Chofu-shi, Tokyo, JAPAN 182

E-mail: {soshi,maekawa}@maekawa.is.uec.ac.jp

Abstract

In open distributed systems, multiple software agents (or objects) work in
cooperation to achieve some goal. Therefore, we need an authorization model
that can control security and trust relationships of agents. Saga Security Sys-
tem does offer such an auhorization model as well as a security mechanism,
both of which are thoroughly discussed in this paper.

In the model, the unit of authorization is a service context, which represents
a runtime state of an operation. Contrary to expectation, however, authoriza-
tion to invoke a service context is not given to a principal as usual, but to a
service path, which is defined as a sequence of service context invocations. This
approach is one of the outstanding features of the model and provides flexible
and uniform protection suitable for object-oriented systems and cooperative
agent systems. Additionally, we present the security mechanism of Saga Se-
curity System. Security of a Saga Agent during its traversal is controlled by
the Security Monitor integrated with the Agent.

Keywords
security architecture, authorization model, security mechanism, distributed
system, mobile agents or objects.

1 INTRODUCTION

In recent years, inexpensive and high performance computers come into wide
use, and more and more computers become interconnected through computer
networks. One of the greatest advantages of such open environments is easy
sharing of computer resources — but one catch. The ease of sharing in the
environments naturally leads to the difficulty of ensuring security.
Unfortunately, in conventional “secure” systems, it is often the case that

©IFIP 1996. Published by Chapman & Hall

2 A new authorization model and its mechanism in distributed environments

these environments are not taken into account. Nevertheless, since the envi-
ronments described above are expected to prevail, it is of critical importance
to establish security of a proper level in them.

Motivated by these concerns, we are designing and developing Saga Security
System™, a security architecture in open distributed environments (Information-
technology Promotion Agency (IPA), Japan 1996, Soshi 1996, Soshi & Mackawa
1997). In this paper we focus on and discuss its authorization model and
mechanism. The authorization model of Saga Security System is called Saga
authorization model, which provides flexible and uniform protection scheme
suitable for object-oriented systems and cooperative agent systems.

The rest of the paper is organized as follows. We describe the overview
of Saga Security System in Section 2 and review related work in Section 3.
In Section 4, we generally discuss authorization models in open distributed
systems. In Section 5, we explore Saga authorization model. We present the
security mechanism of Saga Security System in Section 6. Finally we conclude
this paper in Section 7.

2 OVERVIEW OF SAGA SECURITY SYSTEM

In open distributed systems, among multiple nodes or applications, informa-
tion is repeatedly copied or moved as it is. In such environments, once security
is compromised in the middle of information flow and unauthorized dissem-
ination of the information takes place, its security can never be controlled
anymore. This is one of the most serious security problems inherent in open
distributed systems.

Unfortunately, however, the use of mutual authentication protocols and en-
crypted communications for network security (Popek & Kline 1979) alone is
not a satisfactory solution to the problem, because once encrypted information
1s decrypted, it is not protected anymore. Hence, though the use of encryption
technique provides communication security, the ultimate security of informa-
tion depends on security of the computer that processes the information.

These considerations naturally lead us to the concept of mobile agents or
objects (for example, Gosling & McGilton 1995): instead of information being
delivered as it is (whether encrypted or not), a dedicated autonomous agent
traverses over a network system. Such an agent is a self-contained entity from
the viewpoint of security, i.e., it has a security profile for the information,
security procedures, audit trail, and so forth. Additionally, information con-
tained in an agent is accessed only through the agent, and the required level
of security is attained.

This is the background of Saga Security System, a security architecture in
open distributed environments. An agent in Saga Security System is called a
Saga Agent.

*We called this system “Security Agent System” before, but we have changed the name
because it was too generic and a little confusing.

Related work 3

Henceforth we are mainly concerned with the authorization model and secu-
rity mechanism of Saga Security System. For further details of Saga Security
System, see Information-technology Promotion Agency (IPA), Japan (1996),
Soshi (1996), Soshi & Maeckawa (1997).

3 RELATED WORK

This section examines the previous work relevant to ours.

In order to take advantage of encapsulation of object-oriented systeins,
the authorization models where users are given authorization on methods,
not on primitive operations, have been an active area of research in recent
years (Ahad, Davis, Gower, Lyngback, Marynowski & Onuegbe 1992, Bertino
& Samatari 1993). Nevertheless they are not so uniformly modeled as Saga
authorization model is. Moreover, surprisingly few models addressed current
open distributed environments.

Rabitti, Bertino, Kim & Woelk (1991) developed a sophisticated authoriza-
tion model on ORION object-oriented database. In the model, exploiting re-
lationships among subjects, objects, and access modes, we can derive implicit
authorizations from explicitly specified authorizations. However, the model
could not appropriately deal with the situations where agents or objects work
in cooperation in distributed systems. In other words, the model is orthogonal
to Saga authorization model and it is possible to integrate both of them.

PCM (Path Context Model) (Boshoff & Solms 1989, Olivier & Solms 1992)
takes into account potentially insecure distributed environments and can per-
form access control in terms of access path. Although PCM does not model
semantics of authorization, it can express a wide variety of conditions of net-
work environments, for instance, network domains and encrypted channels.
It is desirable to accommodate such expressive power into our model in the
future.

4 AUTHORIZATION MODEL IN OPEN DISTRIBUTED
ENVIRONMENTS

Before we discuss Saga authorization model, let us consider a general autho-
rization model for the moment.

control matriz, A (Maekawa, Oldehoeft & Oldehoeft 1987). Each element of
an access control matrix, A[S, O], maintains the set of access rights that a
subject S holds on an object O. Here, objects are passive entities, e.g., files
or I/O devices, protected by security control mechanism, and subjects are
active entities, e.g., users or processes, that access objects. In order to clarify
semantics and terminology, however, in the remainder of the paper, we call
a “subject” a “client” and we do not use the generic term “object” but the

4 A new authorization model and its mechanism in distributed environments

specific name of an entity to be accessed. In addition, the term “object” used
in the paper is supposed to refer to an “object” in object-oriented systems
unless otherwise explicitly stated.

On implementation of an access control matrix, since it is not practical
to implement it straightforwardly because of its sparseness, many traditional
computer systems implement only either its rows (called capability) or columns
(called access control list, or ACL).

Based on the access control matrix model, in the past decades, consider-
able amount of research has been done on computer security (Castano, Fugini,
Martella & Samarati 1995, Denning 1982). However, substantially little at-
tention has been paid to the security of current open distributed systems.
In addition to this, only in the last few years, we have seen studies on secu-
rity models adequate for advanced application, for example, object-oriented
systems and cooperative agent systems.

Therefore, we propose Saga authorization model, which has the following
distinguished advantages that are never found in conventional systems:

® The model takes into account open distributed systems.

® The semantics of the model is independent of that of application, so that
applications can be developed without constraints of security policies and
can be changed without affecting security policies or vice versa.

® The model enables us to specify authorizations appropriate for advanced
application such as object-oriented systems and cooperative agent systems.

® Operations of various level of granularity are handled uniformly in the
model.

® The model expresses and controls trust relationships in distributed systems.

We examine Saga authorization model in Section 5.

SAGA AUTHORIZATION MODEL

<t

Now in this section we discuss Saga authorization model in detail.

5.1 Fine-grained and coarse-grained access control

In traditional authorization models, users can exercise the rights of directly
invoking primitive operations, such as read and write, and these models cannot
take advantage of the concept of encapsulation in object-oriented systems.
That is exemplified as follows. Suppose that a user can update his own
data in a personal information database and is about to change his address
field. In conventional approaches, the user is given authorization on primitive
write operation for the data. However, since this approach allows the user

Saga authorization model 5

to directly access the data, he can update the address in a wrong format or
destroy it intentionally or accidentally.

All we have to do in order to counter the problem is as follows: we prepare an
operation putAddress, which updates an address field in a prescribed format,
and then we give authorization on putAddress, but not on write, to the user.
This way we can naturally incorporate encapsulation into access control.

In addition to such coarse-grained access control, fine-grained access control
is also significantly useful, for example, where access control is performed
together with information flow control (Denning 1982).

From these observations, we see that it is desirable for an authorization
model to be able to control access of various level of granularity. Therefore
in Saga authorization model, operations of various level of granularity can be
handled uniformly as services.

In the following discussions, o.s stands for a service s implemented in a
Saga Agent o when we wish to emphasize who provides a service.

5.2 Access control regarding services as clients

In traditional authorization models, authorization is given to an active entity
of a relatively large granularity, such as a user, process, class, and object.
However, this approach sometimes fails to provide flexible protection scheme.

To see why, let us consider the following example. Suppose that we have
a service getAverageSalary, which computes the average of the salaries of all
employees. getAverageSalary invokes a getSalary service to see the salary of
each employee. Now, if we grant authorization on a service ouly to a user,
in order to authorize a user u to execute getAverageSalary, we may also have
to permit u to execute getSalary for each employee as well. This solution,
however, is far from perfect because « can directly invoke getSalary to know
the salary of another user.

This problem is easily solved if only we can grant to a service the autho-
rization to invoke another service. In the example above, all we have to do
is to place the authorization to invoke getSalary on getAverageSalary, not di-
rectly on w. This way we can offer fine-grained and flexible protection in Saga
authorization model.

5.3 Service context in distributed environments

In centralized systems, when a user invokes a service, the service is executed on
behalf of him. However this no longer holds true for distributed systems. That
is, in distributed systems, it is often the case that a client resides in one Saga
Agent or node but a service invoked by the client resides in another. To control
security appropriately for such a situation, we must be able to model trust
relationships among cooerative agents in distributed systems. For instance,

6 A new authorization model and its mechanism in distributed environments

listTopl0TaxPayers . .
P 4 getPaidTaxList @
I Tax Database
u;

getNameByTaxPayerNo
u;
Legend:

Personal Information
Saga Agent
O 9ang Database

— service request

Figure 1 Service Relationships

with respect to a service s of a Saga Agent and users w, u2, and ug, if we can
specify that uq is authorized to execute s invoked by up but not s invoked by
ug, we can provide highly flexible protection scheme.

For that purpose, we define the current user of a Saga Agent as the user
who has invoked the Agent. A Saga Agent executes on behalf of its current
user. Furthermore, with respect to a Saga Agent o, a service context o is
defined as the pair of a service o.s and its current user u, (u,0.s). In Saga
authorization model, authorization is given on the basis of service contexts.

5.4 Service path in distributed environments

In this section, we shall integrate and evolve the designs of Saga authorization
model discussed in Section 5.1, 5.2, and 5.3.

When Saga Agents work in cooperation in open distributed environments,
it often happens that a service of a Saga Agent invokes a second Saga Agent’s
service, which further invokes a third one, and so on. Conventional access
control matrix models cannot be fully applicable to such situations.

To discuss this, consider the case shown in Figure 1. Saga Agent o pro-
vides a service listTopl0TaxPayers, which collects data about taxpayers and
displays top 10 of them in some expected style. listTopl0TaxPayers calls two
auxiliary services, namely, getPaidTaxList of a Saga Agent o, and getName-
ByTaxPayerNo of a Saga Agent o5. getPaidTaxList of 0y sorts all paid taxes
in descending order and returns the result as well as corresponding taxpayer
numbers. getNameByTaxPayerNo of ¢; takes a taxpayer number as an argu-

~1

Saga authorization model

ment and returns the name of the taxpayer. In the following discussion, to
avoid unnecessary complexity, we mention only services in service contexts.

Now consider the case where a user w and a user us are about to invoke list-
ToplOTaxPayers. Suppose that wu, is authorized to know the taxpayer numbers
and paid taxes of the returned list, and that v is additionally allowed to
know the names of the taxpayers. Moreover, suppose that both % and u, are
not authorized to directly invoke getPaidTaxList and getNameByTaxPayerNo.
Consequently, when uy invokes listTopl0TaxPayers, both of getPaid TaxList and
getNameByTaxPayerNo should be allowed to execute, but when u, invokes list-
ToplOTaxPayers, getNameByTaxPayerNo should not be allowed.

At first glance, we could think of the following two solutions to this problem:

1. We grant the authorization to invoke both of getPaidTaxList and getName-
ByTaxPayerNo to the service listTopl0TaxPayers. When the Saga Agent g
receives a request for listToplOTaxPayers, o, invokes either of or both of
getPaidTaxList and getNameByTaxPayerNo in compliance with security pol-
icy.

2. According to each user’s own authorization, we decompose listTopl0Tax-
Payers into services so that the user may be authorized to invoke some of
them.

Nevertheless, these approaches have a fatal drawback that applications must
provide protection by themselves because the security models and mechanisms
alone cannot deal with the problem above. In other words, applications are
imposed restrictions on not only by their own semantics, but also by security
policies. Thus, for instance, if uy is authorized to call getNameByTaxPayerNo
sometime later, o; must be reconstructed (possibly from scratch) to incorpo-
rate the change in it. To make matters worse, it is nearly impossible that the
solutions above apply to more complicated situations, say, getPaidTaxList or
getNameByTaxPayerNo further invokes services of other Saga Agents.

Therefore, authorization models in distributed systems must be able to
represent, independently of application semantics, a situation where agents or
objects work in cooperation as the example above shows. Such situation can
be modeled by a path of service contexts invocations, gioo...0;, where oy
invokes o3, which further invokes o3, ..., and finally ¢;_; invokes ;. Hence in
Saga authorization model, we can grant the authorization to invoke a service
context ¢ to a path of service context invocations, o109 ...0;. That is, a re-
quest for o is authorized if and only if the path of service context invocations
resulting in the request exactly matches the sequence gioy...0;.

The concept of service paths is one of the key features of Saga authoriza-
tion model and is never found in other traditional authorization models. The
introduction of service paths makes it possible to uniformly synthesize the
designs discussed in Section 5.1, 5.2, and 5.3 into Saga authorization model
and to realize flexible and powerful protection in distributed systems.

8 A new authorization model and its mechanism in distributed environments

Now, to demonstrate the effectiveness of the approach, consider again the
case depicted in Figure 1. In Saga authorization model, the problem is readily
solved as shown in Table 1 (‘=’ stands for ‘invokes’ relation). We should note
how simply it can be solved and how flexible, uniform, and powerful the our
authorization model is.

Table 1 Service Sequences Authorized to Invoke Services

service
client getPaidTaxList getNameByTaxPayerNo
uy — listTopl0TaxPayers allowed allowed
uy — listTopl0TaxPayers allowed denied

We are now ready to state this idea more formally.

A service path is defined as a sequence of service contexts invocations,
0109 ...0;. In this paper, a service path is denoted a. Additionally, a level is
associated with a service path. The level of a service path is defined as i if
the service path consists of ¢ service contexts.

In Saga authorization model, a service path is authorized to invoke a service
context. To state the situation simply and clearly, we define a request pair as
the pair of a service path a and a service context o, (a, o). Then, when a
request routed along « to call o is allowed, we say that (a,0) is authorized.

Generally speaking, we can express invocation relationships among services
with a tree structure. Hence, with respect to a service path, we use with-
out explanation the terms in graph theory such as parent, children, sibling,
ancestor, and descendant.

5.5 Relationships among authorizations

In Saga authorization model, a service path is authorized to invoke a ser-
vice context. However, direct application of this to real systems is considered
impractical due to the following reasous:

® [t is extremely hard to correctly specify authorizations for every service
context and service path in a system.

® Authorizations of service paths cannot be easily adapted to changes of
authorizations or service implementations.

® Relationships among authorizations, service contexts, and service paths are
not immediately obvious.

Saga authorization model 9

To cope with these problems, we introduce the authorizations of new types,
cover authorization and composite authorization. In addition, to make seman-
tics of authorization clear, when referring to authorization discussed so far,
we call it primative authorization. Thus there are three kinds of authorizations
we can explicitly grant to a request pair (a, o), L.e., primitive, cover, or com-
posite authorization, and we call them ezplicit authorizations. Furthermore
we assume that at most one of three types of authorizations can be granted
to (o, 0).

Now we examine cover authorization and composite authorization.

First we consider the case where cover authorization is granted to («, o). In
this case, (v,) is authorized and furthermore for an arbitrary service path d
and service context o', authorization on a request pair (aod/,o’) is derived™.
In other words, when cover authorization is specified on («, o), all descendant
service paths of ag are authorized to invoke any service context. Consequently,
cover authorization enables us to easily update services without affecting their
ancestor service paths. Moreover, through cover authorization, we can utilize
the potential of polymorphism and encapsulation in object-oriented systems.

Next, if composite authorization is given to («a, o), the authorization de-
pends on the authorizations on the children of ag. A typical usage of compos-
ite authorization on («, o) is that («, o) is authorized if and only if all children
of ao are authorized. To describe composite authorization more formally, first
let us define C'(«) as a set of service contexts to be invoked by a service path
a. We assume that C'(«) does not depend on authorizations but on semantics
of application. Furthermore, we associate with (a, o) a logical formula R,
that is combination of conjunction and disjunction of authorization on each
request pair (ao,oy), k = 1,...,i, where {01,02,...,0;} = C(a0o). P,
describes relatiouships between composite authorization on («, o) and autho-
rizations on its children. Now, using B, » (and C(ao) implicitly), we can give
formal description of composite authorization: if composite authorization is
specified on (o, 0), (o, o) is authorized if and only if I}, , is evaluated true.

Cover authorization and composite authorization express relationships among
authorizations, simplify the specification of consistent authorizations in a sys-
tem, and offer flexible authorization scheme.

5.6 Validation of requests

So far we have discussed Saga authorization model thoroughly. In this section,
to summarize the discussions, we present access control in Saga authorization
model and propose the authorized algorithm, which validates a request pair
(a, 7).

To begin with, note that we do not take negative authorization (Rabitti

*Note that authorization is not derived on an arbitrary (¢/, '), but on (aca’,¢'). That is,
cover authorization does not derive excessive authorization at all as it first might appear.

10 A new authorization model and its mechanism in distributed environments

et al. 1991) into account in Saga authorization model. Thus, generally speak-
ing, if explicit authorization is not specified on (a,0), a is not allowed to
execute . Only one exception to this is the case in which cover authorization
is specified on (¢, ¢’) where a@ = @’¢’3 holds. In that case, authorization on
(v, o) is derived from the cover authorization.

Next, let us consider the case where primitive authorization or cover au-
thorization is granted to («, o). In that case, we can immediately execute o
whether or not authorization on (o, o) is derived from cover authorization.

Furthermore, we discuss composite authorization. As we have seen in Sec-
tion 5.5, when composite authorization is given to («, o), access control is
enforced as follows™: if composite authorization is specified on (a, o), (o,0)
is authorized if and only if P,) (authorized(ao,0y), authorized(wo,03), ...,
authorized(awo, o)) is evaluated true where C'(ao) = {0y,02,...,0;}.

However, one problem remains in this discussion. That is to say, we en-
counter a contradiction when I, o) is evaluated false meanwhile authorization
on (a, o) is derived from cover authorization. For simplicity and effectiveness,
the authorization derived from cover authorization takes precedence over com-
posite authorization in Saga authorization model. Thus (a, o) is authorized
when its authorization is derived from cover authorization, whether or not
composite authorization is granted to (o, o).

Finally, a special case is worth while mentioning — recursive calls of service
contexts. For example, it often happens that o; invokes oy, which further
invokes o1, and so forth. Suppose that composite authorization is specified
on (o, 0q) for some a. Since the composite authorization depends on a, at
a glance you might think that it would be possible that validation process of
(o, 1) would end in an infinite loop. However, this is not true since composite
authorization is not granted to a service context but to a request pair. Since on
each service invocation, the level of the corresponding service path is getting
higher, we see that an infinite loop in validation process is never possible.
Needless to say, cover authorization is more appropriate for such a case.

Now, from the discussions above, we see that the authorized algorithm,
which validates (o, o), is defined as shown in Figure 2.

6 IMPLEMENTATION

In this section, we present the security mechanism of Saga Security System,
highlighting its outstanding features, access tokens, access control vectors,
and Security Monstors.

*The final form of authorized algorithm is illustrated in Figure 2.

Implementation 11

procedure authorized(«, o)
if primitive authorization or cover authorization is granted to («,0)
then return true
else begin
if authorization on (a, o) is derived from cover authorization
then return true
else begin
if composite authorization is granted to («, o)
/* suppose that C'(ao) = {oy,09,...,0;} */
then return P, , (authorized(aa, 0y), authorized(ao, 7)),
..., authorized(ao, 0;))
else return false
end
end;

Figure 2 authorized algorithm

6.1 Access token

To implement Saga authorization model, we cannot overemphasize the impor-
tance of ensuring the authenticity and integrity of a request pair («,), in par-
ticular, those of a service path a. These are achieved in Saga Security System
with access tokens, combined with public key cryptosystems (Denning 1982).

In public key cryptosystems, a key for encryption and one for decryption
are not identical. An encryption key is called a public key and can be made
public, on the other hand, a decrptyion key is called a private key and must be
kept secret. One of the important features of public key cryptosystems is that
they can generate a digital signature on a message, with which we make sure
that the identity and content of the message have not been compromised. In
the rest of the paper, K and K~! denote a public key and the corresponding
secret key, respectively. In addition, we write { M}k to mean that a message
M is encrypted (or decrypted) with a key K.

Using public key technology, Saga Agents submit request messages via ac-
cess tokens. To discuss the structure of an access token, let us consider the case
where a Saga Agent o; sends to a Saga Agent 0,11 a request (a;,0;4+1) where
a; = 0102...0; = (u1,01.51){(u2,09.52) ... (w;,0;.5;) and oj41 = (Wig1,0i41.5i11)-
7 denotes an access token and let 7 be the access token corresponding to
(i, 0441). For convenience, 79 is supposed to be (uy,01.51).

Now 7; is defined as follows:

7 ={ai, 040, 11,05 (i=1,...)

where II; = {I1,I5,...,I;} and I; includes the constraints specified by o;, for
example, an expiration time of the access token with which ¢ can counter

12 A new authorization model and its mechanism in distributed environments

a replay attack (Denning 1982) on it. Furthermore, ©; is defined as the set
of the signatures, {6;,62,...,0;}, where 6; = {02‘_1,0'1‘4_1‘]2'}]\,»;1. We assume
190 =01 = (’ltl,Ol.Sl).

The authenticity and integrity of a request pair (q;,¢;41) in 7; is verified
in the following manner. Recall that «; = o105...0; by definition. Then, re-
ceiving 7;, 0,41 can immediately generate i tuples from 7, {0, 05—1, k41, I }
where k = 1,....4. Next 0;41 verifies that {6, }x, = {00,092, 1} = {01,092, 11 }
and using Iy, 0;41 also verifies that the conditions specified by o; are satisfied.
If all the verifications succeed, similarly 0,41 verifies {6y} x, = {61, 03, I»} and
the conditions in I, ..., and eventually {6;}x, = {6;_1,0i41,I;} and the con-
ditions in 7;. Note that a straightforward implementation of a request pair
would be vulnerable to the attack of insertion, deletion, and exchange of ser-
vice contexts of the service path because a service path is a sequence of service
contexts®. However, we have a set of signatures f, = {91«_1,01«4_1,]%,}}(;1,
k=1....,72,in 7; and using them we provide protection against the attack.

Now, from these discussions, we see that the structure of an access token and
a digital signature allow o; to specify ;41 and I, but not to alter o; freely. Of
course, intruders canunot compromise the authenticity and integrity of access
tokens. Therefore, with access tokens, we can realize Saga authorization model
in open distributed environments.

6.2 Access control vector

Every Saga Agent has an access control list, ACL, for services implemented
in it. An ACL in a Saga Agent is a list of access control vectors.

An access control vector is prepared when explicit authorization is granted
to a request pair. Since negative authorization is not defined in Saga authoriza-
tion model, when there does not exist an access control vector corresponding
to a request pair, the request pair is not authorized unless authorization on
it is derived from cover authorization.

Now let us take a closer look at the structure of an access control vector
corresponding to («, (u,0.s)). The access control vector cousists of four parts:
(1) a service path «a, (2) a service s (Saga Agent ID o and current user ID
u are not needed here), (3) a reference to the implementation of s, and (4)
miscellaneous information, which includes an authorization type and a logical
formula P (see Section 5.6).

When an access token for a request («, (u, 0.5)) is sent to a Saga Agent, the
Saga Agent searches its ACL for an access control vector corresponding to the
request. Direct implementation of this search might incur severe performance
degradation since we have to compare service contexts of o and those of access
control vectors one by one. To avoid this and perform effective search, a Saga

*This kind of vulnerability is similar to that of block cipher(Denning 1982).

Conclusion 13

Agent sorts its access control vectors in advance and performs binary search
over them.

6.3 Access control by security monitor

A service called a Security Monitor is associated with every Saga Agent. It is
the Security Monitor of a Saga Agent that performs security control over the
Saga Agent.

When a Saga Agent o receives an access token for a request (a, o), its Secu-
rity Monitor m verifies the token in the way as discussed in Section 6.1. If the
test is successful, i validates whether («, o) is authorized or not using autho-
rized algorithm. Since o has access control vectors for services implemented in
it, the validation can be done locally when primitive authorization or cover
authorization is granted to (a, o).

The question is the case where authorization on (o, ¢) is derived from cover
authorization and the case where composite authorization is granted to («, o).
In such cases, if authorization on (a, o) depends on authorizations on remote
Saga Agents’ services, m sends query messages to those Saga Agents and
collects the responses from them. Based on those responses, m validates («, o)
and if it is allowed, o is invoked.

This way, while a Saga Agent travels over an open distributed system, its
security can be controlled by the Security Monitor integrated with it.

7 CONCLUSION

In this paper we have discussed so far a new authorization model of Saga
Security System, Saga authorization model. The model is uniform and flexible,
and is appropriate for advanced computing models such as object-oriented
systems and agent systems, in open distributed systems. Additionally, we have
presented the security mechanism of Saga Security System, which provides
protection of a Saga Agent while it travels over an open distributed system.
Hence, the security model and mechanism of Saga Security System realize
a promising security architecture in current open distributed systems, which
has been strongly required but cannot be provided by traditional systems.

ACKNOWLEDGMENTS

We would like to thank other members of Saga Security System Project,
Norihiko Kameda, Kiyoshi Une, Satoshi Yoshida, Atsuki Tomioka, Keisuke
Yamaguchi, and Takeharu Kato for useful discussions and comments.

14 A new authorization model and its mechanism in distributed environments

REFERENCES

Ahad, R., Davis, J., Gower, S., Lyngback, P., Marynowski, A. & Onuegbe, E.
(1992), Supporting access control in an object-oriented database lan-
guage, #n ‘Proc. 3rd International Conference on Extending Database
Technology (EDBT)’, pp. 184-200.

Bertino, E. & Samatari, P. (1993), Research issues in discretionary authoriza-
tions for object bases, in ‘Proc. OOPSLA’93 Workshop on Security for
Object-Oriented Systems’, pp. 183-199.

Boshoff, W. H. & Solms, S. H. (1989), ‘A path context model for addressing se-
curity in potentially non-secure environments’, Computers & Security
8(5), 417-425.

Castano, S., Fugini, M., Martella, G. & Samarati, P. (1995), Database Secu-
rity, ACM Press.

Denning, D. E. R. (1982), Cryptography and Data Security, Addison-Wesley
Publishing Co., Reading, MA.

Gosling, J. & McGilton, H. (1995), The Java language environment: A white
paper, Technical report, Sun Microsystems.

Information-technology Promotion Agency (IPA), Japan (1996), Research
report on security architecture and automatic user authentication
in downsizing environments, Technical Report 159, Information-
techuology Promotion Agency (IPA), Japan. In Japauese.

Maekawa, M., Oldehoeft, A. E. & Oldehoeft, R. R. (1987), Operating Systems
— Advanced Concepts, The Benjamin/Cummings Publishing Com-
pany, Inc.

Olivier, M. S. & Solms, S. H. (1992), ‘Building a secure database using self-
protecting objects’, Computers & Security 11(3), 259-271.

Popek, G. J. & Kline, C. S. (1979), ‘Encryption and secure computer net-
works’, ACM Computing Surveys 11(4), 331-356.

Rabitti, F., Bertino, E., Kim, W. & Woelk, D. (1991), ‘A model of autho-
rization for next-generation database systems’, ACM Transactions on
Database Systems 16(1), 88—131.

Soshi, M. (1996), The design and implementation of the Security Agent
mechanism, #n ‘The Collection of Papers in the 15th Technical Pre-
sentations’, Vol. 15, Information-technology Promotion Agency (IPA),
Japan, pp. 225-234.

Soshi, M. & Maekawa, M. (1997), ‘The Saga security system—a security archi-
tecture for open distributed systems’, To appear in the Proceedings of
the 5th IEEE Workshop on Future Trends of Distributed Computing
Systems.

