
A new authorization model and
its mechanism using service
paths in open distributed
environments

Masakazu Soshi and Mamoru Maekawa

Graduate School of Information Systems� University of Electro�
Communications

����� Chofugaoka� Chofu�shi� Tokyo� JAPAN ���
E�mail� fsoshi�maekawag�maekawa�is�uec�ac�jp

Abstract

In open distributed systems� multiple software agents �or objects� work in
cooperation to achieve some goal� Therefore� we need an authorization model
that can control security and trust relationships of agents� Saga Security Sys�

tem does o�er such an auhorization model as well as a security mechanism�
both of which are thoroughly discussed in this paper�
In the model� the unit of authorization is a service context� which represents

a runtime state of an operation� Contrary to expectation� however� authoriza�
tion to invoke a service context is not given to a principal as usual� but to a

service path� which is de�ned as a sequence of service context invocations� This
approach is one of the outstanding features of the model and provides �exible
and uniform protection suitable for object�oriented systems and cooperative
agent systems� Additionally� we present the security mechanism of Saga Se�
curity System� Security of a Saga Agent during its traversal is controlled by
the Security Monitor integrated with the Agent�

Keywords

security architecture� authorization model� security mechanism� distributed
system� mobile agents or objects�

� INTRODUCTION

In recent years� inexpensive and high performance computers come into wide
use� and more and more computers become interconnected through computer
networks� One of the greatest advantages of such open environments is easy
sharing of computer resources � but one catch� The ease of sharing in the
environments naturally leads to the di	culty of ensuring security�
Unfortunately� in conventional
secure� systems� it is often the case that

c�IFIP ����� Published by Chapman � Hall

� A new authorization model and its mechanism in distributed environments

these environments are not taken into account� Nevertheless� since the envi�
ronments described above are expected to prevail� it is of critical importance
to establish security of a proper level in them�
Motivated by these concerns� we are designing and developing Saga Security

System�� a security architecture in open distributed environments �Information�
technology Promotion Agency �IPA�� Japan �

�� Soshi �

�� Soshi �Maekawa
�

��� In this paper we focus on and discuss its authorization model and
mechanism� The authorization model of Saga Security System is called Saga

authorization model� which provides �exible and uniform protection scheme
suitable for object�oriented systems and cooperative agent systems�
The rest of the paper is organized as follows� We describe the overview

of Saga Security System in Section � and review related work in Section ��
In Section �� we generally discuss authorization models in open distributed
systems� In Section �� we explore Saga authorization model� We present the
security mechanism of Saga Security System in Section �� Finally we conclude
this paper in Section ��

� OVERVIEW OF SAGA SECURITY SYSTEM

In open distributed systems� among multiple nodes or applications� informa�
tion is repeatedly copied or moved as it is� In such environments� once security
is compromised in the middle of information �ow and unauthorized dissem�
ination of the information takes place� its security can never be controlled
anymore� This is one of the most serious security problems inherent in open
distributed systems�
Unfortunately� however� the use of mutual authentication protocols and en�

crypted communications for network security �Popek � Kline �
�
� alone is
not a satisfactory solution to the problem� because once encrypted information
is decrypted� it is not protected anymore� Hence� though the use of encryption
technique provides communication security� the ultimate security of informa�
tion depends on security of the computer that processes the information�
These considerations naturally lead us to the concept of mobile agents or

objects �for example� Gosling � McGilton �

��� instead of information being
delivered as it is �whether encrypted or not�� a dedicated autonomous agent
traverses over a network system� Such an agent is a self�contained entity from
the viewpoint of security� i�e�� it has a security pro�le for the information�
security procedures� audit trail� and so forth� Additionally� information con�
tained in an agent is accessed only through the agent� and the required level
of security is attained�
This is the background of Saga Security System� a security architecture in

open distributed environments� An agent in Saga Security System is called a
Saga Agent �

�We called this system �Security Agent System� before� but we have changed the name
because it was too generic and a little confusing�

Related work 	

Henceforth we are mainly concerned with the authorization model and secu�
rity mechanism of Saga Security System� For further details of Saga Security
System� see Information�technology Promotion Agency �IPA�� Japan ��

���
Soshi ��

��� Soshi � Maekawa ��

���

� RELATED WORK

This section examines the previous work relevant to ours�
In order to take advantage of encapsulation of object�oriented systems�

the authorization models where users are given authorization on methods�
not on primitive operations� have been an active area of research in recent
years �Ahad� Davis� Gower� Lyngback� Marynowski � Onuegbe �

�� Bertino
� Samatari �

��� Nevertheless they are not so uniformly modeled as Saga
authorization model is� Moreover� surprisingly few models addressed current
open distributed environments�
Rabitti� Bertino� Kim � Woelk ��

�� developed a sophisticated authoriza�

tion model on ORION object�oriented database� In the model� exploiting re�
lationships among subjects� objects� and access modes� we can derive implicit
authorizations from explicitly speci�ed authorizations� However� the model
could not appropriately deal with the situations where agents or objects work
in cooperation in distributed systems� In other words� the model is orthogonal
to Saga authorization model and it is possible to integrate both of them�
PCM �Path Context Model� �Bosho� � Solms �
�
� Olivier � Solms �

��

takes into account potentially insecure distributed environments and can per�
form access control in terms of access path� Although PCM does not model
semantics of authorization� it can express a wide variety of conditions of net�
work environments� for instance� network domains and encrypted channels�
It is desirable to accommodate such expressive power into our model in the
future�

� AUTHORIZATION MODEL IN OPEN DISTRIBUTED

ENVIRONMENTS

Before we discuss Saga authorization model� let us consider a general autho�
rization model for the moment�
A protection state of a computer system can be represented in an access

control matrix � A �Maekawa� Oldehoeft � Oldehoeft �
���� Each element of
an access control matrix� A�S�O�� maintains the set of access rights that a
subject S holds on an object O� Here� objects are passive entities� e�g�� �les
or I�O devices� protected by security control mechanism� and subjects are
active entities� e�g�� users or processes� that access objects� In order to clarify
semantics and terminology� however� in the remainder of the paper� we call
a
subject� a
client� and we do not use the generic term
object� but the

 A new authorization model and its mechanism in distributed environments

speci�c name of an entity to be accessed� In addition� the term
object� used
in the paper is supposed to refer to an
object� in object�oriented systems
unless otherwise explicitly stated�
On implementation of an access control matrix� since it is not practical

to implement it straightforwardly because of its sparseness� many traditional
computer systems implement only either its rows �called capability� or columns
�called access control list � or ACL��
Based on the access control matrix model� in the past decades� consider�

able amount of research has been done on computer security �Castano� Fugini�
Martella � Samarati �

�� Denning �
���� However� substantially little at�
tention has been paid to the security of current open distributed systems�
In addition to this� only in the last few years� we have seen studies on secu�
rity models adequate for advanced application� for example� object�oriented
systems and cooperative agent systems�
Therefore� we propose Saga authorization model� which has the following

distinguished advantages that are never found in conventional systems�

� The model takes into account open distributed systems�
� The semantics of the model is independent of that of application� so that
applications can be developed without constraints of security policies and
can be changed without a�ecting security policies or vice versa�

� The model enables us to specify authorizations appropriate for advanced
application such as object�oriented systems and cooperative agent systems�

� Operations of various level of granularity are handled uniformly in the
model�

� The model expresses and controls trust relationships in distributed systems�

We examine Saga authorization model in Section ��

� SAGA AUTHORIZATION MODEL

Now in this section we discuss Saga authorization model in detail�

��� Fine�grained and coarse�grained access control

In traditional authorization models� users can exercise the rights of directly
invoking primitive operations� such as read and write� and these models cannot
take advantage of the concept of encapsulation in object�oriented systems�
That is exempli�ed as follows� Suppose that a user can update his own

data in a personal information database and is about to change his address
�eld� In conventional approaches� the user is given authorization on primitive
write operation for the data� However� since this approach allows the user

Saga authorization model �

to directly access the data� he can update the address in a wrong format or
destroy it intentionally or accidentally�
All we have to do in order to counter the problem is as follows� we prepare an

operation putAddress� which updates an address �eld in a prescribed format�
and then we give authorization on putAddress� but not on write� to the user�
This way we can naturally incorporate encapsulation into access control�
In addition to such coarse�grained access control� �ne�grained access control

is also signi�cantly useful� for example� where access control is performed
together with information �ow control �Denning �
����
From these observations� we see that it is desirable for an authorization

model to be able to control access of various level of granularity � Therefore
in Saga authorization model� operations of various level of granularity can be
handled uniformly as services�
In the following discussions� o�s stands for a service s implemented in a

Saga Agent o when we wish to emphasize who provides a service�

��� Access control regarding services as clients

In traditional authorization models� authorization is given to an active entity
of a relatively large granularity� such as a user� process� class� and object�
However� this approach sometimes fails to provide �exible protection scheme�
To see why� let us consider the following example� Suppose that we have

a service getAverageSalary� which computes the average of the salaries of all
employees� getAverageSalary invokes a getSalary service to see the salary of
each employee� Now� if we grant authorization on a service only to a user�
in order to authorize a user u to execute getAverageSalary� we may also have
to permit u to execute getSalary for each employee as well� This solution�
however� is far from perfect because u can directly invoke getSalary to know
the salary of another user�
This problem is easily solved if only we can grant to a service the autho�

rization to invoke another service� In the example above� all we have to do
is to place the authorization to invoke getSalary on getAverageSalary� not di�
rectly on u� This way we can o�er �ne�grained and �exible protection in Saga
authorization model�

��� Service context in distributed environments

In centralized systems� when a user invokes a service� the service is executed on
behalf of him� However this no longer holds true for distributed systems� That
is� in distributed systems� it is often the case that a client resides in one Saga
Agent or node but a service invoked by the client resides in another� To control
security appropriately for such a situation� we must be able to model trust
relationships among cooerative agents in distributed systems� For instance�

� A new authorization model and its mechanism in distributed environments

Legend:

Saga Agent

service request

o o1

o2

o3

u1

u2

listTop10TaxPayers

getNameByTaxPayerNo

getPaidTaxList

Tax Database

Personal Information
Database

Figure � Service Relationships

with respect to a service s of a Saga Agent and users u�� u�� and u�� if we can
specify that u� is authorized to execute s invoked by u� but not s invoked by
u�� we can provide highly �exible protection scheme�
For that purpose� we de�ne the current user of a Saga Agent as the user

who has invoked the Agent� A Saga Agent executes on behalf of its current
user� Furthermore� with respect to a Saga Agent o� a service context � is
de�ned as the pair of a service o�s and its current user u� �u� o�s�� In Saga
authorization model� authorization is given on the basis of service contexts�

��� Service path in distributed environments

In this section� we shall integrate and evolve the designs of Saga authorization
model discussed in Section ���� ���� and ����
When Saga Agents work in cooperation in open distributed environments�

it often happens that a service of a Saga Agent invokes a second Saga Agent�s
service� which further invokes a third one� and so on� Conventional access
control matrix models cannot be fully applicable to such situations�
To discuss this� consider the case shown in Figure �� Saga Agent o� pro�

vides a service listTop��TaxPayers� which collects data about taxpayers and
displays top �� of them in some expected style� listTop��TaxPayers calls two
auxiliary services� namely� getPaidTaxList of a Saga Agent o� and getName�

ByTaxPayerNo of a Saga Agent o�� getPaidTaxList of o� sorts all paid taxes
in descending order and returns the result as well as corresponding taxpayer
numbers� getNameByTaxPayerNo of o� takes a taxpayer number as an argu�

Saga authorization model �

ment and returns the name of the taxpayer� In the following discussion� to
avoid unnecessary complexity� we mention only services in service contexts�
Now consider the case where a user u� and a user u� are about to invoke list�

Top��TaxPayers� Suppose that u� is authorized to know the taxpayer numbers
and paid taxes of the returned list� and that u� is additionally allowed to
know the names of the taxpayers� Moreover� suppose that both u� and u� are
not authorized to directly invoke getPaidTaxList and getNameByTaxPayerNo�
Consequently� when u� invokes listTop��TaxPayers� both of getPaidTaxList and
getNameByTaxPayerNo should be allowed to execute� but when u� invokes list�
Top��TaxPayers� getNameByTaxPayerNo should not be allowed�
At �rst glance� we could think of the following two solutions to this problem�

�� We grant the authorization to invoke both of getPaidTaxList and getName�

ByTaxPayerNo to the service listTop��TaxPayers� When the Saga Agent o�
receives a request for listTop��TaxPayers� o� invokes either of or both of
getPaidTaxList and getNameByTaxPayerNo in compliance with security pol�
icy�

�� According to each user�s own authorization� we decompose listTop��Tax�

Payers into services so that the user may be authorized to invoke some of
them�

Nevertheless� these approaches have a fatal drawback that applications must
provide protection by themselves because the security models and mechanisms
alone cannot deal with the problem above� In other words� applications are
imposed restrictions on not only by their own semantics� but also by security
policies� Thus� for instance� if u� is authorized to call getNameByTaxPayerNo

sometime later� o� must be reconstructed �possibly from scratch� to incorpo�
rate the change in it� To make matters worse� it is nearly impossible that the
solutions above apply to more complicated situations� say� getPaidTaxList or
getNameByTaxPayerNo further invokes services of other Saga Agents�
Therefore� authorization models in distributed systems must be able to

represent� independently of application semantics� a situation where agents or
objects work in cooperation as the example above shows� Such situation can
be modeled by a path of service contexts invocations� ���� � � � �i� where ��
invokes ��� which further invokes ��� ���� and �nally �i�� invokes �i� Hence in
Saga authorization model� we can grant the authorization to invoke a service
context � to a path of service context invocations � ���� � � � �i� That is� a re�
quest for � is authorized if and only if the path of service context invocations
resulting in the request exactly matches the sequence ���� � � � �i�
The concept of service paths is one of the key features of Saga authoriza�

tion model and is never found in other traditional authorization models� The
introduction of service paths makes it possible to uniformly synthesize the
designs discussed in Section ���� ���� and ��� into Saga authorization model
and to realize �exible and powerful protection in distributed systems�

 A new authorization model and its mechanism in distributed environments

Now� to demonstrate the e�ectiveness of the approach� consider again the
case depicted in Figure �� In Saga authorization model� the problem is readily
solved as shown in Table � ���� stands for �invokes� relation�� We should note
how simply it can be solved and how �exible� uniform� and powerful the our
authorization model is�

Table � Service Sequences Authorized to Invoke Services

service

client getPaidTaxList getNameByTaxPayerNo

u� � listTop��TaxPayers allowed allowed
u� � listTop��TaxPayers allowed denied

We are now ready to state this idea more formally�
A service path is de�ned as a sequence of service contexts invocations�

���� � � � �i� In this paper� a service path is denoted �� Additionally� a level is
associated with a service path� The level of a service path is de�ned as i if
the service path consists of i service contexts�
In Saga authorization model� a service path is authorized to invoke a service

context� To state the situation simply and clearly� we de�ne a request pair as
the pair of a service path � and a service context �� ��� ��� Then� when a
request routed along � to call � is allowed� we say that ��� �� is authorized�
Generally speaking� we can express invocation relationships among services

with a tree structure� Hence� with respect to a service path� we use with�
out explanation the terms in graph theory such as parent� children� sibling�
ancestor� and descendant�

��� Relationships among authorizations

In Saga authorization model� a service path is authorized to invoke a ser�
vice context� However� direct application of this to real systems is considered
impractical due to the following reasons�

� It is extremely hard to correctly specify authorizations for every service
context and service path in a system�

� Authorizations of service paths cannot be easily adapted to changes of
authorizations or service implementations�

� Relationships among authorizations� service contexts� and service paths are
not immediately obvious�

Saga authorization model �

To cope with these problems� we introduce the authorizations of new types�
cover authorization and composite authorization� In addition� to make seman�
tics of authorization clear� when referring to authorization discussed so far�
we call it primitive authorization� Thus there are three kinds of authorizations
we can explicitly grant to a request pair ��� ��� i�e�� primitive� cover� or com�
posite authorization� and we call them explicit authorizations � Furthermore
we assume that at most one of three types of authorizations can be granted
to ��� ���
Now we examine cover authorization and composite authorization�
First we consider the case where cover authorization is granted to ��� ��� In

this case� ��� �� is authorized and furthermore for an arbitrary service path ��

and service context ��� authorization on a request pair ������ ��� is derived��
In other words� when cover authorization is speci�ed on ��� ��� all descendant
service paths of �� are authorized to invoke any service context� Consequently�
cover authorization enables us to easily update services without a�ecting their
ancestor service paths� Moreover� through cover authorization� we can utilize
the potential of polymorphism and encapsulation in object�oriented systems�
Next� if composite authorization is given to ��� ��� the authorization de�

pends on the authorizations on the children of ��� A typical usage of compos�
ite authorization on ��� �� is that ��� �� is authorized if and only if all children
of �� are authorized� To describe composite authorization more formally� �rst
let us de�ne C��� as a set of service contexts to be invoked by a service path
�� We assume that C��� does not depend on authorizations but on semantics
of application� Furthermore� we associate with ��� �� a logical formula P�����
that is combination of conjunction and disjunction of authorization on each
request pair ���� �k�� k � �� � � � � i� where f��� ��� � � � � �ig � C����� P�����
describes relationships between composite authorization on ��� �� and autho�
rizations on its children� Now� using P����� �and C���� implicitly�� we can give
formal description of composite authorization� if composite authorization is
speci�ed on ��� ��� ��� �� is authorized if and only if P����� is evaluated true�
Cover authorization and composite authorization express relationships among

authorizations� simplify the speci�cation of consistent authorizations in a sys�
tem� and o�er �exible authorization scheme�

��� Validation of requests

So far we have discussed Saga authorization model thoroughly� In this section�
to summarize the discussions� we present access control in Saga authorization
model and propose the authorized algorithm� which validates a request pair
��� ���
To begin with� note that we do not take negative authorization �Rabitti

�Note that authorization is not derived on an arbitrary ���� ���� but on �����
� �

��� That is�
cover authorization does not derive excessive authorization at all as it �rst might appear�

�� A new authorization model and its mechanism in distributed environments

et al� �

�� into account in Saga authorization model� Thus� generally speak�
ing� if explicit authorization is not speci�ed on ��� ��� � is not allowed to
execute �� Only one exception to this is the case in which cover authorization
is speci�ed on ���� ��� where � � ����� holds� In that case� authorization on
��� �� is derived from the cover authorization�
Next� let us consider the case where primitive authorization or cover au�

thorization is granted to ��� ��� In that case� we can immediately execute �
whether or not authorization on ��� �� is derived from cover authorization�
Furthermore� we discuss composite authorization� As we have seen in Sec�

tion ���� when composite authorization is given to ��� ��� access control is
enforced as follows�� if composite authorization is speci�ed on ��� ��� ��� ��
is authorized if and only if P������authorized���� ���� authorized���� ���� � � ��
authorized���� �i�� is evaluated true where C���� � f��� ��� � � � � �ig�
However� one problem remains in this discussion� That is to say� we en�

counter a contradiction when P����� is evaluated false meanwhile authorization
on ��� �� is derived from cover authorization� For simplicity and e�ectiveness�
the authorization derived from cover authorization takes precedence over com�
posite authorization in Saga authorization model� Thus ��� �� is authorized
when its authorization is derived from cover authorization� whether or not
composite authorization is granted to ��� ���
Finally� a special case is worth while mentioning � recursive calls of service

contexts� For example� it often happens that �� invokes ��� which further
invokes ��� and so forth� Suppose that composite authorization is speci�ed
on ��� ��� for some �� Since the composite authorization depends on ��� at
a glance you might think that it would be possible that validation process of
��� ��� would end in an in�nite loop� However� this is not true since composite
authorization is not granted to a service context but to a request pair� Since on
each service invocation� the level of the corresponding service path is getting
higher� we see that an in�nite loop in validation process is never possible�
Needless to say� cover authorization is more appropriate for such a case�
Now� from the discussions above� we see that the authorized algorithm�

which validates ��� ��� is de�ned as shown in Figure ��

� IMPLEMENTATION

In this section� we present the security mechanism of Saga Security System�
highlighting its outstanding features� access tokens � access control vectors�
and Security Monitors �

�The �nal form of authorized algorithm is illustrated in Figure ��

Implementation ��

procedure authorized��� ��
if primitive authorization or cover authorization is granted to ��� ��
then return true

else begin

if authorization on ��� �� is derived from cover authorization
then return true

else begin

if composite authorization is granted to ��� ��
�� suppose that C���� � f��� ��� � � � � �ig ��
then return P������authorized���� ���� authorized���� ����

���� authorized���� �i��
else return false

end

end�

Figure � authorized algorithm

��� Access token

To implement Saga authorization model� we cannot overemphasize the impor�
tance of ensuring the authenticity and integrity of a request pair ��� ��� in par�
ticular� those of a service path �� These are achieved in Saga Security System
with access tokens� combined with public key cryptosystems �Denning �
����
In public key cryptosystems� a key for encryption and one for decryption

are not identical� An encryption key is called a public key and can be made
public� on the other hand� a decrptyion key is called a private key and must be
kept secret� One of the important features of public key cryptosystems is that
they can generate a digital signature on a message� with which we make sure
that the identity and content of the message have not been compromised� In
the rest of the paper� K and K�� denote a public key and the corresponding
secret key� respectively� In addition� we write fMgK to mean that a message
M is encrypted �or decrypted� with a key K�
Using public key technology� Saga Agents submit request messages via ac�

cess tokens � To discuss the structure of an access token� let us consider the case
where a Saga Agent oi sends to a Saga Agent oi�� a request ��i� �i��� where
�i � ���� � � � �i � �u�� o��s���u�� o��s�� � � � �ui� oi�si� and �i�� � �ui��� oi���si����
� denotes an access token and let �i be the access token corresponding to
��i� �i���� For convenience� �� is supposed to be �u�� o��s���
Now �i is de�ned as follows�

�i � f�i� �i��� i�!ig �i � �� � � ��

where i � fI�� I�� � � � � Iig and Ii includes the constraints speci�ed by oi� for
example� an expiration time of the access token with which oi can counter

�� A new authorization model and its mechanism in distributed environments

a replay attack �Denning �
��� on it� Furthermore� !i is de�ned as the set
of the signatures� f��� ��� � � � � �ig� where �i � f�i��� �i��� IigK��

i

� We assume

�� � �� � �u�� o��s���
The authenticity and integrity of a request pair ��i� �i��� in �i is veri�ed

in the following manner� Recall that �i � ���� � � � �i by de�nition� Then� re�
ceiving �i� oi�� can immediately generate i tuples from �i� f�k� �k��� �k��� Ikg
where k � �� � � � � i� Next oi�� veri�es that f��gK�

� f��� ��� I�g � f��� ��� I�g
and using I�� oi�� also veri�es that the conditions speci�ed by o� are satis�ed�
If all the veri�cations succeed� similarly oi�� veri�es f��gK�

� f��� ��� I�g and
the conditions in I�� ���� and eventually f�igKi

� f�i��� �i��� Iig and the con�
ditions in Ii� Note that a straightforward implementation of a request pair
would be vulnerable to the attack of insertion� deletion� and exchange of ser�
vice contexts of the service path because a service path is a sequence of service
contexts�� However� we have a set of signatures �k � f�k��� �k��� IkgK��

k

�

k � �� � � � � i� in �i and using them we provide protection against the attack�
Now� from these discussions� we see that the structure of an access token and

a digital signature allow oi to specify �i�� and I�� but not to alter �i freely� Of
course� intruders cannot compromise the authenticity and integrity of access
tokens� Therefore� with access tokens� we can realize Saga authorization model
in open distributed environments�

��� Access control vector

Every Saga Agent has an access control list� ACL� for services implemented
in it� An ACL in a Saga Agent is a list of access control vectors�
An access control vector is prepared when explicit authorization is granted

to a request pair� Since negative authorization is not de�ned in Saga authoriza�
tion model� when there does not exist an access control vector corresponding
to a request pair� the request pair is not authorized unless authorization on
it is derived from cover authorization�
Now let us take a closer look at the structure of an access control vector

corresponding to ��� �u� o�s��� The access control vector consists of four parts�
��� a service path �� ��� a service s �Saga Agent ID o and current user ID
u are not needed here�� ��� a reference to the implementation of s� and ���
miscellaneous information� which includes an authorization type and a logical
formula P �see Section �����
When an access token for a request ��� �u� o�s�� is sent to a Saga Agent� the

Saga Agent searches its ACL for an access control vector corresponding to the
request� Direct implementation of this search might incur severe performance
degradation since we have to compare service contexts of � and those of access
control vectors one by one� To avoid this and perform e�ective search� a Saga

�This kind of vulnerability is similar to that of block cipher�Denning ��
���

Conclusion �	

Agent sorts its access control vectors in advance and performs binary search
over them�

��� Access control by security monitor

A service called a Security Monitor is associated with every Saga Agent� It is
the Security Monitor of a Saga Agent that performs security control over the
Saga Agent�
When a Saga Agent o receives an access token for a request ��� ��� its Secu�

rity Monitor m veri�es the token in the way as discussed in Section ���� If the
test is successful� m validates whether ��� �� is authorized or not using autho�
rized algorithm� Since o has access control vectors for services implemented in
it� the validation can be done locally when primitive authorization or cover
authorization is granted to ��� ���
The question is the case where authorization on ��� �� is derived from cover

authorization and the case where composite authorization is granted to ��� ���
In such cases� if authorization on ��� �� depends on authorizations on remote
Saga Agents� services� m sends query messages to those Saga Agents and
collects the responses from them� Based on those responses�m validates ��� ��
and if it is allowed� � is invoked�
This way� while a Saga Agent travels over an open distributed system� its

security can be controlled by the Security Monitor integrated with it�

� CONCLUSION

In this paper we have discussed so far a new authorization model of Saga
Security System� Saga authorization model� The model is uniform and �exible�
and is appropriate for advanced computing models such as object�oriented
systems and agent systems� in open distributed systems� Additionally� we have
presented the security mechanism of Saga Security System� which provides
protection of a Saga Agent while it travels over an open distributed system�
Hence� the security model and mechanism of Saga Security System realize

a promising security architecture in current open distributed systems� which
has been strongly required but cannot be provided by traditional systems�

ACKNOWLEDGMENTS

We would like to thank other members of Saga Security System Project�
Norihiko Kameda� Kiyoshi Une� Satoshi Yoshida� Atsuki Tomioka� Keisuke
Yamaguchi� and Takeharu Kato for useful discussions and comments�

�
 A new authorization model and its mechanism in distributed environments

REFERENCES

Ahad� R�� Davis� J�� Gower� S�� Lyngback� P�� Marynowski� A� � Onuegbe� E�
��

��� Supporting access control in an object�oriented database lan�
guage� in �Proc� �rd International Conference on Extending Database
Technology �EDBT��� pp� ��������

Bertino� E� � Samatari� P� ��

��� Research issues in discretionary authoriza�
tions for object bases� in �Proc� OOPSLA�
� Workshop on Security for
Object�Oriented Systems�� pp� �����

�

Bosho�� W� H� � Solms� S� H� ��
�
�� �A path context model for addressing se�
curity in potentially non�secure environments�� Computers � Security

����� ��������
Castano� S�� Fugini� M�� Martella� G� � Samarati� P� ��

��� Database Secu�

rity� ACM Press�
Denning� D� E� R� ��
���� Cryptography and Data Security� Addison�Wesley

Publishing Co�� Reading� MA�
Gosling� J� � McGilton� H� ��

��� The Java language environment� A white

paper� Technical report� Sun Microsystems�
Information�technology Promotion Agency �IPA�� Japan ��

��� Research

report on security architecture and automatic user authentication
in downsizing environments� Technical Report ��
� Information�
technology Promotion Agency �IPA�� Japan� In Japanese�

Maekawa� M�� Oldehoeft� A� E� � Oldehoeft� R� R� ��
���� Operating Systems

� Advanced Concepts� The Benjamin�Cummings Publishing Com�
pany� Inc�

Olivier� M� S� � Solms� S� H� ��

��� �Building a secure database using self�
protecting objects�� Computers � Security ������ ��
�����

Popek� G� J� � Kline� C� S� ��
�
�� �Encryption and secure computer net�
works�� ACM Computing Surveys ������ ��������

Rabitti� F�� Bertino� E�� Kim� W� � Woelk� D� ��

��� �A model of autho�
rization for next�generation database systems�� ACM Transactions on

Database Systems ������ �������
Soshi� M� ��

��� The design and implementation of the Security Agent

mechanism� in �The Collection of Papers in the ��th Technical Pre�
sentations�� Vol� ��� Information�technology Promotion Agency �IPA��
Japan� pp� ��������

Soshi� M� � Maekawa� M� ��

��� �The Saga security system�a security archi�
tecture for open distributed systems�� To appear in the Proceedings of
the �th IEEE Workshop on Future Trends of Distributed Computing
Systems�

