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Abstract. The safety problem in access matrix models is the one to de-
termine whether or not a given subject can eventually obtain an access
privilege to a given object. Unfortunately, little is known about protec-
tion systems for which the safety problem is decidable, except for strongly
constrained systems (e.g., monotonic systems). Therefore, we propose
the Dynamic-Typed Access Matrix Model, which extends Typed Access
Matrix model by allowing the type of an object to change dynamically.
DTAM model has an advantage that it can describe non-monotonic pro-
tection systems for which the safety problem is decidable. In this paper,
we formally define DTAM model and then discuss various aspects of it.
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1 Introduction

Today a huge amount of valuable information is being processed and stored by
computers and it is of great importance to establish security in such environ-
ments. A security model gives us a framework that specifies computer systems
(or protection systems) precisely from a security point of view.

One of the most widely-accepted security models is an access matriz model.
In an access matrix model, a protection system is characterized by a collection of
subjects (e.g., users or processes) and objects (e.g., files or I/O devices). Access
control is enforced according to an access matriz A, which has a row for each
subject and a column for each object, and A[s, o] maintains the set of access
modes that subject s is authorized to perform on object o.

Harrison et al. first formalized security property of protection systems in
the access matrix model (HRU model) as the safety problem [4].! The safety
problem is the one to determine whether or not a given subject can eventually
obtain an access privilege to a given object. Generally speaking, unfortunately,
the safety problem is undecidable [4, 7]. This is primarily due to the fact that the
access matrix model has broad expressive power and that the number of newly
created objects can be infinite. Little is known about protection systems for

! For lack of space, here we present some relevant work only briefly. See the excellent
historical review in [6] for further details.



which the safety problem is decidable, except for strongly constrained systems
(e.g., monotonic systems, where no new entities can be created and no revocation
of privileges are allowed). For example, Sandhu developed the Typed Access
Matrix (TAM) Model [6], which has a wide variety of decidable safety cases, but
most of which are limited to monotonic systems. However, since security policies
in existent computer systems are not monotonic, it would be difficult to apply
the safety analysis of monotonic systems to real systems.

Therefore, we propose the Dynamic-Typed Access Matrix (DTAM) Model,
which extends TAM model by allowing the type of an object to change dy-
namically. DTAM model has an advantage that it can describe non-monotonic
protection systems for which the safety problem is decidable. In order to show
this, first we introduce a type relationship (TR) graph. Then we show that the
safety problem for non-monotonic systems becomes decidable if, roughly speak-
ing, the TR graphs of the systems have no cycle with respect to parent-child
relationship between objects.? Moreover, if we impose on this situation addi-
tional restrictions that no new objects are permitted to be created, the safety
problem becomes NP-hard. The decidable safety cases discussed in this paper
fall outside the known decidable ones in previous work.

The remainder of the paper is structured as follows. We formalize DTAM
model in Section 2 and make a thorough investigation of the safety property of
DTAM model in Section 3. Section 4 discusses various topics on DTAM model
and then finally we conclude this paper in Section 5.

2 Dynamic-Typed Access Matrix Model

In this section we give a formal description of the Dynamic-Typed Access Matrix
(DTAM) model.

2.1 Basic Concepts

Definition 1. Objects are defined as passive entities, e.g., files or I/O devices,
which are protected by the security control mechanism of a computer system,
and subjects as active entities, e.g., users or processes, which access objects. The
current set of subjects and objects are denoted by S and O, respectively. We
assume S C O. Each member of the set O — S is called a pure object [6].

Every object has its own identity inherently. Hence, for instance, no object can
be created repeatedly as the identical one. In this paper, the identities of a
subject and an object are represented by s and o, respectively (s € S, o € O).

Definition 2. Every object has a type, which can be changed dynamically. L is
a finite set of all types. In particular, we denote a set of types of subjects by Lg
(Ls C L). We assume 1 < |Lg| < |L].

2 The precise condition for this case will be given in Section 3.



For example, Ls may consist of three user types, programmer, system-engineer,
and project-manager. In addition, we can take fileirqde—secrets and filepypiic for
examples of types of pure objects.

Next we define the type function as follows:

Definition 3. First we define the function which returns the type of a subject as
fs : S = Lg. Next we define the function which returns the type of a pure object
as fo: (0O —S)— (L—Lg). Now we can define the type function fr, : O — L,
which associates a type with every object, as follows:

fulo) = {fs(o) ifoeS,

fo(o) otherwise.

Note that mapping from objects to their types expressed by fr may vary as time
elapses because object types can be dynamically changed.

Definition 4. Access modes are kinds of access that subjects can execute on
objects (e.g., read, write, own, and ezecute) and a finite set of access modes are
denoted by R.

Using Definition 4, an access matrix can be defined as follows:

Definition 5. An access matriz A is a matrix which has a row for each subject
and a column for each object. An element A[s,o] of A stores the set of access
modes (A[s, 0] C R) that subject s is authorized to exercise on object o.

Now we can define a protection state (or state for short) of a system as follows:

Definition 6. A protection state is defined by (S, O, A, fr) and denoted by Q.

2.2 Primitive Operations and Commands

The way in which a protection system evolves by activities of subjects is modeled
by incremental changes of the protection state, which are made by executing a
sequence of commands. In this section, we first define primitive operations in
order to give the definition of commands.

Definition 7. The definition of primitive operations is given in Table 1, where
the states just before and after a primitive operation executes are indicated by
(S, 0, A, fr) and (S', O', A’, f1'), respectively.

Most notable primitive operations in DTAM model are change type of subject
s to I,/ and change type of object o to [,’. It is often desirable to change
the type of an object dynamically to specify security policies in real computer
systems [2, 5]. For the example in Section 2.1, if a user who is a programmer
is promoted, first to the position of a system engineer, and next to a project
manager, then such a situation is easily expressed by dynamically changing the
user type accordingly. Dynamically changeable types are also advantageous in
safety analysis (Section 3).
We shall define commands based on Definition 7.



Primitive Operations [Conditions [New States

enter r into A[s,0] [s€ S S=5,0=0
0€O0 A'ls, o] = Als,0] U {r}
r€R A'ls' 0’1 = A[s',0'] if (s',0") # (s,0),

foralls' € S,0 €O
fi' (") = fr(d') for all o' € O
S

delete r from A[s,o0][s € S "=5,0=0
0€O0 A'ls, 0] = Als, 0] — {r}
r€R A'ls', 0] = A[s',0'] if (s',0") # (s,0),

foralls' € S,0 €O
fi' (") = fr(d') for all o' € O

change type of seSs S =50=0
subject s to I,'|l,’ € Lg A'ls',0] = Als',0] for all s € S, 0€ O
fi'(s) =1

fi'(0) = fr(o)if o #£ s, for all o € O
change type of 0€0-S [§=5,0=0
object o to I,' |I,' € L — Ls|A'[s,0'] = Als,0'] forall s€ S, 0 € O

fi'(o) =1,
fi'(0") = fr(d") if o' # o, for all o' € O
create subject s’ of|s’ € O S =SuU{s},0=0U{s}
type I ls € Ls A'[s,0] = Als,0] for all s € S, 0 € O

[s,
A'ls',ol=¢forall o€ O
[

s,8'] = ¢ for all s € S’
fL:(S’)_Z ls _— o
create object o’ of [0' € O A];”e iO?S”,_Of'LiO)O (L)Jr{aé'}o =
type I, lo€ L—Ls |A'[s,0] = A[s,o] forall s € S, 0€ O
A'ls, 0] = ¢ forall s€ S
}CE:E(O)I) ::;Z (o) for all 0 € O
destroy subject s [s€ S S =S5—{s},0=0-{s}

A'[s",0] = A[s',0] for all s € S", 0 € O’
fi'(0) = fr(o) for all 0 € O

destroy objecto o€ 0 —-S [§=S5,0"=0 - {0}

A'[s,0'] = Als, 0] for all s € S', o' € O’
fi' (") = fr(d') for all o' € O’

Table 1. DTAM primitive operations

Definition 8. A command is a computational unit which has the form:

command a(xy : l1,x0 : 1o, ..., 2k : 1)
ifry € Alxg,,, Tk, | Are € AlTh,y, Thpy] A oo AT € ATk, Tk, |
then op;; ops; .. .; opn
end
Here « is the name of the command, and z1, 2, ..., z; are formal parameters
of a whose types are given by Iy, I, ..., I, respectively. Furthermore, kg1, ks,

vy ksmy ko1, ko2, - - -, kom are integers between 1 and k. r1, 72, ..., ry, are access



modes and op;, ops, ..., op, are primitive operations. We assume that &k, m, and
n are finite. CM denotes a finite set of commands.

As defined above, a command consists of the condition and the body. Condi-
tion of a command is the predicate placed between if and then in the command,
where we can specify the conjunction of multiple condition expressions. However,
a command does not necessarily have the condition. A command with no con-
dition is said to be an wunconditional command. A condition expression in the
condition of a command tests for the presence of an access mode in a cell of
A. Finally, the body of a command is the sequence of the primitive operations
contained in the command.

A command is invoked by replacing all formal parameters of the command with
actual parameters (i.e., objects) of the appropriate types. After that, if the con-
dition of the command and all of the conditions of the primitive operations in the
body are evaluated to true in terms of the actual parameters, then the command
(more precisely, the primitive operations in the body with actual parameters)
can be executed. Otherwise, the command cannot be executed. Furthermore, we
assume that every execution of commands is serial and atomic.

2.3 Authorization Schemes and Protection Systems

In this section we define an authorization scheme and a protection system, which
are abstractions of security policies and computer systems, respectively [6]:

Definition 9. An authorization scheme is defined by (Ls, L, R, CM). Fur-
thermore, A protection system (or simply system) consists of an authorization
scheme and an initial state (So, Oo, Ao, fLo)-

Next we consider monotonicity and non-monotonicity of authorization schemes
and protection systems.

Definition 10. An authorization scheme whose commands do not contain prim-
itive operations destroy, delete, and change type is said to be monotonic.
An authorization scheme which is not monotonic is said to be non-monotonic.
Furthermore, if the authorization scheme of a system is monotonic, the system
is said to be monotonic, otherwise non-monotonic.

This completes the formalization of DTAM model.

3 Safety Analysis

In this section we shall study the safety problem in DTAM model thoroughly.

3.1 Preliminaries

First in this section we present some preliminaries that make the analysis easier.



Definition 11. Normalization of command a(zy : Iy, zo : la, ..., Tk : 1) is to
perform the following two transformations on a for every formal parameter z;
(1 <i < k). However, if @ has no change type of subject (or object) z; in
its body, then the two transformations have no effect on it with respect to z;.
In the description below, we assume for simplicity that z; is a subject. If z; is a
pure object, we transform « in the similar manner.

[Transformation 1] If a has only one change type of subject z;, then the
transformation 1 has no effect on it with respect to z;. Otherwise, o includes
in the body more than one change type of subject z;. Now we extract
from the body of a every change type of subject z; but the last one.

[Transformation 2] In this stage we assume that the transformation 1 has
already been applied to a. Let us assume that with respect to z;, the body
of @ now contains create subject z; of type [; and change type of
subject z; to I} (if it is not the case, Transformation 2 has no effect with
respect to z;). Now we extract change type of subject z; to I from the
body and transform create subject z; of type [; into create subject x;
of type li. Furthermore, we replace the type of formal parameter z; of «
with Il. As a result, we have a(zy : Iy, 2 : 1o, ..., @; I}, ..., 2 : Ig) instead
of the original a.

Transformation 1 and 2 optimize commands with respect to change type, i.e.,
take the net effects of the sequences of the primitive operations. So the following
theorem is rather obvious:

Theorem 12. Given any command a(xq : 11, 3 : la, ..., Tk : ) and protection
state @, if a can be run on Q and ) changes into a state Q' by executing a,
then command o' (x1 : 1§, x2 1 15, ..., @k : ), which is the normalization of «,
can also be run on @ and () changes into Q' by executing o .

Proof. For the sake of brevity, we assume that every formal parameter x; of a
is a subject. If it is a pure object, we can prove the theorem in the same way.

Concerning Transformation 1, for each x;, every change type of subject
z; in the body of « has no effect on the execution of other primitive operations
in the body. Thus, only the last change type of subject z; is significant and
the results of execution of a and that of &’ on ) are the same.

Now notice that for each z;, there is at most one create subject z; in
the body of a because no subject can be created repeatedly as the identical
one (see also Section 2.1). Furthermore, before create subject x;, there must
exist no primitive operation which accesses z;, i.e., enter/delete for an element
of A corresponding to z;, change type of subject z;, and create/destroy
subject x;. Therefore, Transformation 2 does not cause any difference between
the results of execution of a and that of ', but possibly does between the formal
parameters of x; in « and in o'. However, the latter difference is not significant
in type checking of formal and actual parameters in « and o' since the actual
parameter subject corresponding to x; does not exist until « (or ') is executed

on (.



Finally, recall that Transformation 1 and 2 does not make any change in the
condition part of a. As a result if the condition of « holds true on @, then so
does the condition of o’. This completes the proof. a

By Theorem 12, we can easily show the next corollary:

Corollary 13. Set of reachable states from the initial state of a protection sys-
tem do not change even if all commands in the command set of the system are
normalized.

The most important result of Theorem 12 (or Corollary 13) is that we have
only to consider commands each of which contains at most one change type
operation with respect to each formal parameter. This makes the following safety
analysis easier. Hence hereafter we assume that all commands are normalized
unless otherwise explicitly stated.

Now we introduce a type relationship (TR) graph for safety analysis of DTAM
model. For that purpose, first we define parent-type relationships between types.

Definition 14. If the body of a(z1 : Iy, z2 : la, ..., Tk : I) has create subject
x; of type l; or create object z; of type I; (1 < i < k), then we define I; as
a child type with respect to create in «. If I; is not a child type with respect to
create in «, then [; is said to be a parent type with respect to create in «. In
particular, if every I; (1 < ¢ < k) is a child type with respect to create, all I;
are said to be orphan types.

Definition 15. — If the body of a(z; : Iy, z3 : ls, ..., Ty : l;) has change
type of subject z; to I} or change type of object z; to I} (1 <i <k),
then I} is said to be a child type with respect to change type in « and [; is
said to be a parent type with respect to change type in «.

— If the body of a(xy : l1, w2 : la, ..., Tk : l) has neither change type of
subject z; nor change type of object z; and [; is a parent type with
respect to create in a (1 <4 < k), then I; is said to be a parent type with
respect to change type in a as well as a child type with respect to change
type in a. In this case the types of the parent and the child are the same.

In order to demonstrate what parent-child relationships between types are like,
let us consider the following three commands a;y, as, and as:

command a; (zy : 1§, 22 : 1°)
create object =5 of type [°
change type of subject z; to []
end

command as(z : [5)
change type of subject x to ]
end

command az(z : [5)
create subject z of type I3
end
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Fig. 1. Example of TR graph

First let us consider «;. [ is a parent type with respect to create in «; and
a parent type with respect to change type in a;. Also I3 is a child type with
respect to change type in ;. [° is a child type with respect to create in a;.
In as, [5 is a parent type with respect to create in ay and a parent type with
respect to change type in as. Furthermore, /5 is a child type with respect to
change type in as. Concerning ag, we see that 5 is an orphan type. It is evident
from a3 that any command that has an orphan type must be unconditional and
we can execute the command on any protection state. In consequence, we can
create objects of an orphan type infinitely.
Now we are ready to define a type relationship (TR).

Definition 16. A type relationship (TR) graph RG = (Vg, ER) is a directed
graph defined as follows:

— Vg is a set of vertices and Vg = L.

— Eg (C Vg x Vg) is a set of edges and for each pair of vy, vy € Vg, a edge
from v; to vs exists in Eg if and only if either of the following two conditions
holds:

e for some command «, vy is a parent type with respect to create in «
and v is a child type with respect to create in «, or

e for some command «, vy is a parent type with respect to change type
in o and w9 is a child type with respect to change type in a.

For example, we show in Figure 1 TR graph for the three commands ay, as, as
in this section .

3.2 Safety Analysis of Non-monotonic Protection Systems (I)

Let us again consider TR graph depicted in Figure 1. Furthermore we assume
that a subject s of type [{ exists in a state. Now we can create from the state
an infinite number of pure objects 01, 02, ..., by executing a4 (s,01), az(s),
a1(s,02), as(s), . ... In addition, as stated in Section 3.1, we can create objects
of an orphan type infinitely. In summary, the existence of cycles® and orphan

% Throughout this paper, we regard a (self-)loop as a special case of cycles, i.e., a cycle
of length one.



types in a TR graph is closely related to whether or not the number of objects
in a protection system is finite, which in turn heavily influences the decidability
of the safety problem as mentioned in Section 1.

In this section we shall show that DTAM model can describe non-monotonic
systems for which the safety problem is decidable.

First of all we define creating commands [6] and parent-child relationships
between objects.

Definition 17. If command « contains create subject or create object oper-
ations in its body, we say that « is a creating command, otherwise a non-creating
command.

Definition 18. If command «a(zy : Iy, z3 : la, ..., xk : I) can be executed by
substituting oy, 09, ..., of for 1, za, ..., ¥} and the execution creates some new
objects, then we say that o; (1 < i < k) is a parent if [; is a parent type with
respect to create in «, otherwise that o; is a child. A descendant of object o is
recursively defined as o itself or a child of a descendant of o. If object 01 is a
descendant of object 0y, 05 is said to be an ancestor of o .

Note that even a pure object can be a parent of other objects by definition.
Now we can prove the following lemma:

Lemma 19. Suppose a TR graph has no cycle that contains parent types with
respect to create in creating commands. In such a case, given any creating
command a(zy 2 1y, o : 1o, ..., g : 1), if l; (1 < i < k) is a parent type with
respect to create in «, then o must have change type of subject z; to [;' or
change type of object z; to l;' in its body such that l; #1;.

Proof. Suppose that for some creating command a(zy : Iy, x2 : la, ..., Tk @ lg)
and some i (1 < i < k), [; is a parent type with respect to create in o and «
does not have change type of subject z; to l;' or change type of object x;
to ;' in its body such that [; # [;'. In that case, I; is a parent type as well as a
child type with respect to change type by Definition 15. Consequently the TR
graph must contain at least one self-loop with vertex [; by Definition 16. This is
a contradiction. |

Lemma 19 means that the execution of a creating command « must change the
type of every actual parameter (object) into another type if the type of the
corresponding formal parameter is a parent type with respect to create in a.
However, the converse of Lemma 19 is not true.

Using Lemma 19, we can prove Lemma 20:

Lemma 20. The number of objects in arbitrary protection state of a protection
system has an upper bound, provided that:

1. the authorization scheme of the system has no orphan type, and
2. the TR graph of the system has no cycle that contains parent types with
respect to create in creating commands.
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Fig. 2. Descendants of an object

Proof. Since there are no orphan types, every child type with respect to cre-
ate has the corresponding parent type with respect to create. Therefore, every
object in the system is a descendant of an object in the initial state Q¢ =
(So, Oo, Ao, fLo)-

For command «, let CR(a) be the total number of create subject and
create object operations in the body of a. Furthermore, let C R4, be the
maximum value of CR(a) (o € CM). By Definition 8, CR 4, is finite.

Now, with respect to some object o in a protection state, let us consider the
number of descendants of o (see Figure 2).*

First we consider the maximum number of direct children of 0. We see that
only at most |L| — 1 times we can execute creating commands with o as input.
The reason for this is as follows. If we can execute some creating command « with
o as its actual parameter, then the type of the corresponding formal parameter
must be always a parent type with respect to create in « since o is already
existent. Therefore, by Lemma 19, a type of o must be changed to another type
after a with o is executed. So if we can execute such creating commands more
than |L| — 1 times, then in the execution sequence of the commands, at least
two types assigned to o must be the same. However, this implies that in the TR
graph there exists a cycle that contains several types assigned to o, all of which
are parent types with respect to create in creating commands. This contradicts
the assumption 2 of Lemma 20. Therefore, the number that creating commands
with o as input can be executed is at most |L| — 1 and as a consequence the
number of direct children of o during the lifetime of the system is given by at
most CRyax X (|L] —1).

Next we discuss the maximum number of generations of descendants of o.
The number of the generations is less than or equal to |L|. The reason is that if
it is greater than |L|, in descendants of o there exist two objects that are of the

4 Note that Figure 2 is not a TR graph. Please do not be confused in the following
discussion.



same type. This also implies that the TR graph has a cycle with parent types
with respect to create and causes a contradiction.

From the discussions above, an upper bound of the number of descendants
of an object is given by:

14+ (CRmar(|L] = 1)) + (CRpmaz (L] = 1)) + ... + (CRpax (|L]| — 1))IFI-1
(CRmuz(|L| - 1))|L| -1
-+-wh maz (| L] —1) > 1
CRom (L= 1) =1 where CRpa.(|L] — 1) >
|L| -+-where CRpa (L] —1) =1
1 --- where CRpq(|L| — 1) = 0.

Consequently, the number of objects in arbitrary protection state of the protec-
tion system has an upper bound O,,,., which is given by:

(CRmaz(IL| — 1)1 =1

0 |Oo| CRye (L= 1) =1 where CRpq. (L] —1) > 1
mas |Oo||L] -+ where CRy0.(|L] — 1) =1
|Op| -+» where CRpa(|L| — 1) = 0.

From Lemma 20, we can derive Theorem 21:

Theorem 21. The safety problem for protection systems is decidable, provided
that:

1. the authorization schemes of the systems have no orphan type, and
2. the TR graphs of the systems have no cycle that contains parent types with
respect to create in creating commands.

Proof. By Lemma 20, the number of objects in arbitrary protection states of
the systems in Theorem 21 is finite. This implies that the number of distinct
protection states of such a system is also finite, which is proved as follows.

Let ns and n, denote the numbers of subjects and objects, respectively.
Then the access matrix A has n, rows and n, columns and can express at most
(2/8ymsme distinct states of authorization since each element of A can have at
most 27| distinct states. In regard to fr, the maximum number of ways in which
fr maps objects to object types is given by:

{|Ls "(|L| = |Ls|)te—" if |Ls| <|L|
|Ls

e otherwise. (i.e., |L| = |Ls])
From the discussions above, an upper bound of the number of distinct protection
states of the system is given by (recall that a protection state is defined by a
four-tuple (S, O, A, f1)):

Omaz No Omuz Omaz — N |R|nsno Ng _ No—Ng
£ Sneo { (O ) (O ) 2™ ) - )

---if |Lg| < |L]
D {(O:;:w> 2l Rln.® n} -+ -otherwise. (i.e., |L| = |Lg|)

Ls




In other words, the number of different states is finite. Therefore, we can check
whether or not a particular subject has a particular right for a particular object
in every reachable state from the initial state by using, say, depth-first search. O

By the proof above, we see that whenever the conditions given in Theorem 21
are satisfied, the safety problem is decidable regardless of the kinds of primitive
operations in command bodies. Namely, Theorem 21 shows the existence of new
non-monotonic systems where the safety problem is decidable.

3.3 Safety Analysis of Non-monotonic Protection Systems (II)

In this section, we again discuss the safety problem for non-monotonic systems in
Theorem 21, but with further restriction that they have no creating commands.

Theorem 22. The safety problem is NP-hard for protection systems, provided
that:

1. the authorization schemes of the systems have no creating command,® and
2. the TR graphs of the systems have no cycle.

Proof. First we present the subset sum problem [3]:

Given a finite set M, a size function w(m) € ZT for each m € M,
positive integer N. Is there a subset M’ C M such that the sum of the
sizes of the elements in M' is exactly N7

The subset sum problem is known to be NP-complete. Hereafter we assume that
M = {mq, ma, ..., my} and > w(m;) = I. Furthermore, let wy, w, ...,
wy. be the set of distinct values of w(m4), w(msz), ..., w(my,). Without loss of
generality, we assume that w(m;) < w(ms) < ... < w(my) and wy < wy < ...
< wy. This implies that 1 < w(m) = w;.

Given this subset sum problem and a protection system that satisfies the con-
ditions in Theorem 22, we run the authorization scheme construction algorithm
(AC algorithm for short), which is given in Figure 3. Two while statements in
the figure ((1) and (6)) compute Lg and C M, respectively, and the commands
an,end and a; ; (i and j are variables) are defined as follows:

command oy enq(z : 13)

enter r into Afz, z]

change type of subject = to [
end

s
end

command «; j(z1 : [§, 2 l;’)

change type of subject z; to [

s

itw(my;)
change type of object z, to 2, ,

end



Ls « {l3}; C {3}

while C # ¢ do begin /¥ (1) */
From C = {Ij ,l;,,...,1;,}, choose I, whose subscript i, is
the smallest of {i1, i2, ..., i1} and set i < iq.
Ce -t /% (2) %/
for j <~ 1 to k do begin /* (3) */
if i+ w; < I then begin /¥ (4) */
Ls & Ls U{li, }i C « CU{EE, ) /* (5) */
end
else goto END1
end;
END1:
end;
CM « {an,ena}; C « Ls;
while C # ¢ do begin /* (6) */
From C = {I} ,l},,...,1;}, choose I whose subscript i, is
the smallest of {i1, 72, ..., %} and set i < iq.

C e -,
for j < 1 to n do begin
if i+ w(m;) <I then CM + CM U {«;, ;} else goto END2
end;
END2:
end;
R+ {r}; Ls < Ls U{ly,lia}; L < Ls U{I3,15,...,12,12,qa};

Fig. 3. Algorithm for authorization scheme construction

For example, let us consider the case that M = {my,m2,ms}, w(m;) = 2, w(ms)
= 3, w(ms) = 3. Shown in Figure 4 is the TR graph of the authorization scheme
generated by AC algorithm. For the sake of simplicity, the parts of the graph for
types of pure objects and parent-child relationships in command a enq are not
drawn in Figure 4.

Now we consider whether AC algorithm eventually stops or not. Regarding
while statement (1) of AC algorithm, [{ whose subscript ¢ is the smallest is
removed from C'in step (2) and [7,,, is added to C' in step (5). However, since
the condition in step (4) ensures that a subscript of each element of C' is not
greater than I, C' becomes empty eventually and while statement (1) surely
terminates. With respect to while statement (6), it also stops in the end. The
computational complexity of AC algorithm is O(In).

We are now in a position to consider the polynomial-time reducibility from
the subset sum problem to the safety problem in Theorem 22. For that pur-
pose, we consider the protection system P, which has the authorization scheme
generated by AC algorithm. The initial state of P, (Sy, Oo, Ao, fro), is given

5 Such protection systems do not have orphan types.
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Fig. 4. TR graph generated by AC algorithm

So = {s}

- OOZSOU{Ol,Oz,...,On}

— For every pair of s € Sp and o € Oq, Ag[s,0] = ¢
~ fro(s) =15, fro(oi) =13 (1 <i<n)

Fig. 5. Initial state of P

in Figure 5. In the rest of this section we reduce the subset sum problem to
the safety problem for P, which is a restricted case of the safety problem in
Theorem 22.

Let us assume the subset sum problem has a solution M' = {m;,, mj,, ...,
mj, }. That is, M' C M and w(m;,) +w(m;,) +... +w(m;,) = N. In such
a case, for subject s and pure objects o;,, 0j,, ..., 0j, We can execute com-
mands g j, (S, 05, ), aw(m].l)’jz(s,ojz), Qay(my, )+w(mjy ) is (s,0j5), --., and finally
Qs (my )+ w(miy) o tw(mg,_ )it (s, 04,) one by one. According to the execution, the
type of s changes from [ to lfﬂ(mn)’ l;(m]_l)w(m]_z), e lfﬂ(m]_l)+w(m]_2)+m+w(m]_l)
= [% in turn. Finally, for subject s, we can invoke command an enq4(s), and s
acquires the privilege r. If the subset sum problem has no solution, the type of
s can never be [3; and r is not granted to s.

On the other hand, suppose that s can possess the privilege r in P. Namely,

for s, 0j,, 04y, ..., 0j,, we can run commands g, j, (8,04, ), Qay,js(S,045)5 -+
Qa;_4,j;(5,05,) in this order and the type of s is changed into [; = I%;. Finally
we can execute an end(s) and s gets r. Note that 0 = ap < a1 < ... <ay =N
holds.

At this time, let us assume that ag; (1 <i < n) takes the following form:

command o ;(x1 : [§, 22 : 1)
change type of subject z; to [},
change type of object z, to [2, ,



end.

Thus we have z1, 23, ..., zn and for every i (1 < i < n), we set w(m;) to z;.

Consequently, we have M = {my, ma, ..., my}, w(m), w(ms), ..., w(m,).
Now, by the authorization scheme of P, we see that for every b (1 < b <),

ap —ap—1 = w(my,) holds and by adding each side of these equations we obtain:

N = w(mj1) +w(mj2) +"'+w(mjl)'

Then M' = {m;,, m;,, ..., m;, }is exactly a solution of the subset sum problem. O

4 Discussion

The reason for the decidability of Theorem 21 can be informally summarized
as follows: recall that the TR graphs have no cycle that contains parent types
with respect to create in creating commands in the theorem. So if the current
type of o is a parent type with respect to create in «, the execution of creating
command « must change the type of every actual parameter object o of a into a
type that o has never experienced. To put it in another way, creating commands
make ‘irreversible’ changes on types of parent objects. It is this irreversibility in
creating objects that makes the safety analysis decidable; The type change in
creating objects is irreversible, so that the number of times such type changes
occur is finite since the total number of types is finite by assumption. In con-
sequence, the number of objects is finite (Lemma 20) and the safety problem
becomes decidable.

In non-monotonic systems in Theorem 21, it is possible that the systems
reach a state where we can no longer create new objects. However, generally
speaking, it is a good practice to reevaluate security policies continuously [1], so
the state could be a possible candidate point of time for such reevaluation.

Although the number of objects in the systems of Theorem 21 is finite, be-
cause the TR graphs can have cycles as long as the cycles do not contain parent
types with respect to create in creating commands, it is possible to execute com-
mands infinite times in such systems. In that case, the lifetimes of the systems
are infinite.

Finally, it should be noted again that the safety problem is generally unde-
cidable and most of decidable safety cases in previous work are for monotonic
systems. On the other hand, the decidable cases in Theorem 21 and in Theo-
rem 22 are for non-monotonic systems and fall outside the known decidable ones.
Especially, we have shown that the safety problem in Theorem 22 belongs to a
well-known complexity class, namely, NP-hard. However, in practice safety anal-
ysis is intractable unless it has polynomial time complexity. So further research
is needed for non-monotonic systems where the safety analysis is decidable in
polynomial time.



5 Conclusion

In this paper, we have proposed the Dynamic-Typed Access Matrix (DTAM)
Model, which extends TAM model by allowing the type of an object to change
dynamically. DTAM model has an advantage that it can describe non-monotonic
protection systems where the safety problem is decidable. In order to show this,
first we have introduced a type relationship (TR) graph, with which we express
both parent-child and transition relationships among types. Next we have shown
that the safety problem becomes decidable in a non-monotonic system, provided
that some restrictions are imposed on it. Moreover, we have shown that the safety
problem becomes NP-hard when no new entities are permitted to be created. The
decidable safety cases discussed in this paper fall outside the known decidable
ones in previous work.

In subsequent research, we will go on investigating other non-monotonic sys-
tems where the safety analysis is decidable, especially, in polynomial time.
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