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Abstract
In the paper we present an overview of Saga Security

System, a security architecture in open distributed systems.
An agent in Saga Security System is called a Saga Agent.

The authorization model in Saga Security System (Saga
authorization model) supports the novel concept of a service
path and provides uniform and flexible protection appro-
priate for advanced computational models such as object-
oriented systems and cooperative agent systems. With re-
spect to the security mechanism of Saga Security System,
its key features are an access token and a Security Monitor.
Access tokens are implemented using public key technology
and ensure integrity of request messages issued by Saga
Agents. In addition, we can regard the Security Monitor of
a Saga Agent as a reference monitor for the Agent. Security
of a Saga Agent during its traversal over distributed envi-
ronments is controlled by the Security Monitor integrated
with the Agent.

1 Introduction
In recent years, inexpensive and high performance com-

puters come into wide use, and more and more computers
become interconnected through computer networks. In
such environments, we can enjoy easy sharing of resources
over networks, although, we usually suffer from reduced
security of such environments at the same time.

It is often the case that in conventional “secure” systems,
these environments are not taken into account. However,
such environments as described above are expected to dom-
inate, and establishment of security of a proper level in them
is of critical importance.

Motivated by these concerns, we are designing and de-
veloping Saga Security System1, a security architecture in
open distributed environments [9, 16, 17, 18]. In this paper
we describe an overview of Saga Security System.

The remainder of the paper is structured as follows. We
present the fundamental problem of security in open dis-
tributed systems in Section 2. To solve the problem, we
propose Saga Security System and discuss it in Section 3.
Next in Section 4, we explore Saga authorization model.
We present the security mechanism of Saga Security Sys-
tem in Section 5. Then we review related work in Section 6.
Finally we discuss the future work and conclude this paper
in Section 7.

1We called this system “Security Agent System” before, but we have
changed the name because it was too generic and a little confusing.

2 Security Problems in Open Distributed
Systems

To begin with, let us consider the fundamental problem
of security in open distributed systems.

In open distributed systems, among multiple nodes or
applications, information is repeatedly copied or moved as
it is. In such environments, once security is compromised in
the middle of information flow and unauthorized dissemi-
nation of the information takes place, its security can never
be controlled anymore. This is one of the most serious
security problems inherent in open distributed systems.

Unfortunately, however, the use of mutual authentica-
tion protocols and encrypted communications for network
security [13] alone is not a satisfactory solution to the prob-
lem, because once encrypted information is decrypted, it
is not protected anymore. Hence, though the use of en-
cryption technique provides communication security, the
ultimate security of information depends on security of the
computer that processes the information.

These considerations naturally lead us to the concept of
mobile agents or objects [4, 7]: instead of information being
delivered as it is (whether encrypted or not), a dedicated
autonomous agent traverses over a network system. Such
an agent is a self-contained entity from the viewpoint of
security, i.e., it has a security profile for the information,
security procedures, audit trail, and so forth. Additionally,
information contained in an agent is accessed only through
the agent, and the required level of security is attained.

This is the background of Saga Security System, a se-
curity architecture in open distributed environments. An
agent in Saga Security System is called a Saga Agent.

3 Overview of Saga Security System
Saga Security System has the following outstanding fea-

tures not found in traditional computer systems:

1. In order to apply to as many computing models and
environments as possible, Saga Security System pro-
vides a general security architecture that is indepen-
dent of programming languages and application se-
mantics.

2. Under the condition of Item 1 above, Saga Secu-
rity System gives Saga authorization model, which
supports advanced computing models such as object-
oriented systems and cooperative agent systems, in
open distributed environments. For that purpose, Saga



authorization model defines the novel concept of a ser-
vice path and provides flexible and powerful protec-
tion based on it.

3. A Saga Agent is a self-contained entity from the view-
point of security. In particular, a Security Monitor is
associated with every Saga Agent, and while the Agent
travels over an open distributed system, its security can
be controlled by the Security Monitor. Furthermore,
access tokens are implemented using public key tech-
nology and ensure integrity of request messages issued
by Saga Agents.

Therefore, Saga Security System realizes a promising secu-
rity architecture in current open distributed environments.

Now we present an overview of Saga Security System.
Saga Agents as mobile agents (objects) can be implemented
in scripts, byte codes, or machine (binary) codes. As men-
tioned in Item 1 above, however, Saga Security System
is supposed to provide a security architecture applicable
to as many computing models and environments as pos-
sible. Therefore, we do not make any assumption about
how a Saga Agent is executed2. Instead, we make some
assumptions about a computational model of Saga Agents
and about their execution environments, both of which are
given below.

A Saga Agent is a self-contained entity from the view-
point of security, where data and methods to access the data
are encapsulated. In other words, a Saga Agent must be an
instance of an abstract data type at the very least. Of course,
it may or may not be completely object-oriented or intelli-
gent. A method of a Saga Agent is called a service, and in
the following discussions, ��� stands for a service � imple-
mented in a Saga Agent �. Finally, Saga Agents interact
with one another via synchronous message passing.

Furthermore, a Saga Agent is executed on a Saga Agent
Base (SAB). An SAB is an execution environment for Saga
Agents and is supposed to be a Trusted Computing Base
(TCB) [6]. An SAB guarantees that each Saga Agent runs
in its own address space distinctly separated from others
and that message passing is the only means when a Saga
Agent wants to access other Agents. Moreover, an SAB
supports secure migration of Saga Agents.

Under these assumptions, in the paper we discuss Saga
Security System, focusing on its authorization model (Saga
authorization model) and security mechanism. For more
details of Saga Security Systems, see [9, 16, 17, 18].

4 Saga Authorization Model
In this section, we discuss Saga authorization model,

which provides uniform and flexible protection appropriate
for advanced computational models such as object-oriented
systems and cooperative agent systems. The reader is re-
ferred to [18] for further details of the model.
4.1 Service Context

In traditional authorization models, users can exercise
the privileges of directly invoking primitive operations,
such as read and write, and these models cannot take advan-
tage of the concept of encapsulation in object-oriented sys-
tems [1]. To counter the problem, Saga authorization model
should specify not only authorizations to invoke primitive

2For a full description of a framework of mobile agents, see [4, 8].

operations, but also authorizations to invoke services pro-
vided by Saga Agents. Additionally, in Saga authorization
model, if we can grant authorization on services to a prin-
cipal as well as to another service, we can provide flexible
protection scheme [2].

Moreover, Saga authorization model must take current
distributed environments into consideration. Therefore, the
model should be able to control security and trust relation-
ships of Saga Agents. For example, in distributed environ-
ments, it is desirable for the model to be able to describe
which Saga Agent provides which service, or who is re-
sponsible for which Saga Agent.

From the discussions above, Saga authorization model
is modeled as follows. In the model, we define the current
user of a Saga Agent as the user who has invoked the Agent.
A Saga Agent executes on behalf of its current user. Then,
with respect to a Saga Agent �, its current user �, and a
service ���, a service context � is defined as the pair:

��� �����

In Saga authorization model, authorization is given on the
basis of service contexts. In other words, service contexts
in Saga authorization model correspond to subjects/objects
in conventional authorization models. This is a great depar-
ture from conventional models. Moreover, in principle, we
could contain in a service context arbitrary elements other
than the above ones, for example, time variable, predicate
on a system state, and we could perform security control
according to them. Thus, the concept of a service context
is applicable to a wide range of situations.

Now we can see from the above discussions that Saga
authorization provides highly flexible and uniform protec-
tion in current distributed systems.

4.2 Service Paths in Distributed Environments
In this section, we shall evolve the idea presented in

Section 4.1.
In open distributed systems, multiple Saga Agents work

in cooperation to achieve some goal. Conventional access
control matrix models cannot be fully applicable to such
situations.

To discuss this, consider the case shown in Figure 1.
Saga Agent �1 provides a service listTop10TaxPayers,
which displays the data about top 10 taxpayers in some
expected style. listTop10TaxPayers calls two auxiliary
services, namely, getPaidTaxList of Saga Agent �2 and
getNameByTaxPayersNo of Saga Agent �3. getPaid-
TaxList of �2 sorts all the paid taxes in descending order
and returns the result together with corresponding taxpayer
numbers. getNameByTaxPayersNo of �3 takes a tax-
payer number as an argument and returns the name of
the taxpayer. In the following discussion, for the sake
of brevity, we mention only services in service contexts.

Now consider the case where a user �1 and a user �2 are
about to invoke listTop10TaxPayers. Let us assume that
�1 is authorized to know the taxpayer names, the taxpayer
numbers, and the paid taxes in the returned list, but assume
that �2 is authorized to know only the taxpayer numbers
and the paid taxes. Moreover, suppose that �1, �2, and
�1 are not authorized to directly invoke getPaidTaxList
and getNameByTaxPayersNo. Consequently, when �1
invokes listTop10TaxPayers, both of getPaidTaxList and
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getNameByTaxPayersNo should be allowed to execute,
but when�2 invokes listTop10TaxPayers, nothing but get-
PaidTaxList should be allowed.

Traditional authorization models can only express sim-
ple client/server relationships. Then, the most common
solutions to the problem would be as follows:

1. We grant the authorization to invoke both of getPaid-
TaxList and getNameByTaxPayersNo to the service
listTop10TaxPayers. When the Saga Agent �1 re-
ceives a request for listTop10TaxPayers, �1 invokes
either of or both of getPaidTaxList and getNameBy-
TaxPayersNo in compliance with security policy.

2. According to each user’s own authorization, we de-
compose listTop10TaxPayers into services so that
the user may be authorized to invoke some of them.

Nevertheless, these solutions have a fatal drawback that ap-
plications must provide protection by themselves because
the security models and mechanisms alone cannot deal with
the problem above. To put it another way, applications are
imposed restrictions on not only by their own semantics,
but also by security policies. Thus, for instance, if �2 is au-
thorized to call getNameByTaxPayersNo sometime later,
�1 must be rebuilt (possibly from scratch) to incorporate the
change in it. To make matters worse, it is nearly impossible
that the solutions above apply to more complicated situa-
tions, say, getPaidTaxList or getNameByTaxPayersNo
further invokes services of other Saga Agents.

Therefore, authorization models in distributed systems
must be able to represent, independently of application
semantics, situations where agents or objects work in co-
operation as the example above shows. For that purpose,
we have only to be able to set authorizations based on se-
quences of invoked services. To demonstrate the effective-
ness of this approach, consider again the problem depicted
in Figure 1. With the approach, we can readily solve the
problem as shown in Table 1 (‘�’ stands for ‘invokes’
relation). We should note how simply it can be solved.

We are now ready to state this idea more formally. In
Saga authorization model, we define a service path as a
sequence of service context invocations:

�1�2 � � � ��

where �1 invokes �2, which further invokes �3, ..., and
finally ���1 invokes ��. In this paper, a service path is
denoted �. Additionally, a level is associated with a service
path. The level of a service path is defined as � if the service
path consists of � service contexts.

Then, in Saga authorization model, authorization to in-
voke a service context � is not given to a principal as usual,
but to a service path �1�2 � � � ��. To state the situation
simply and clearly, a pair of a service path � and a service
context �:

��� ��

is called a request pair in Saga authorization model. Then,
when a request routed along � to call � is allowed, we say
that ��� �� is authorized.

The concept of service paths is one of the key features
of Saga authorization model and is never found in other tra-
ditional authorization models. The introduction of service
paths makes it possible to uniformly synthesize the designs
discussed in Section 4.1 and 4.2 into Saga authorization
model and to realize flexible and powerful protection in
distributed systems.
4.3 Delegation in Saga Authorization Model

With respect to a service path, there is another important
aspect that we should not miss: namely, it is trust relation-
ships, in particular, delegation of privileges expressed in a
service path.

To take a closer look at this, let us consider Figure 1
again. Note that �1 by itself is not authorized to execute
getNameByTaxPayersNo, but authorized if and only if�1
requests �1 to execute listTop10TaxPayers. That is to say,
it is the request of �1 for listTop10TaxPayers that brings
�1 the authorization to invoke getNameByTaxPayersNo,
which �1 by itself does not have. This implies that the
request of �1 for listTop10TaxPayers is equivalent to the
agreement of �1 on �1’s execution of getNameByTaxPay-
ersNo: In other words, �1 delegates some of its privilege
to �1 through the request. Owing to the expressive power
of service paths, Saga authorization model can clearly rep-
resent such situations. Furthermore, we can evolve the idea
by explicitly dispatching service paths. See [17] for further
details.

Needless to say, it is not true that all requests immedi-
ately imply delegation in Saga authorization model. How-
ever, Saga authorization model can naturally express del-
egation if necessary, which cannot be easily dealt with by
traditional authorization models.

The notable concept of service paths is of great benefit
to us, although, it is a little formidable task to implement
them securely in open distributed systems. Therefore, next
in Section 5, we thoroughly discuss the security mechanism
to realize Saga authorization model.

5 Security Mechanism
In this section, we present the security mechanism of

Saga Security System, highlighting its outstanding features,



service
getPaidTaxList getNameByTaxPayersNo

client �1 � ����������	
�	��� allowed allowed
�2 � ����������	
�	��� allowed denied

Table 1: Authorizations given to Sequences of Services

access tokens, access control vectors, and Security Moni-
tors (Figure 2).
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Figure 2: Security Mechanism of Saga Agent

5.1 Access Token
To implement Saga authorization model, we cannot

overemphasize the importance of ensuring the authentic-
ity and integrity of a request pair ��� ��, in particular, those
of a service path �. These are achieved in Saga Secu-
rity System with access tokens, combined with public key
cryptosystems [5]. An access token of a Saga Agent is
constructed by the token generator of the Agent.

In public key cryptosystems, a key for encryption and
one for decryption are not identical. An encryption key is
called a public key and can be made public, on the other
hand, a decrptyion key is called a private key and must be
kept secret. One of the important features of public key
cryptosystems is that they can generate a digital signature
on a message, with which we make sure that the identity
and the content of the message have not been compromised.
In the rest of the paper, � and ��1 denote a public key
and the corresponding secret key, respectively. In addition,
we write �	�� to mean that a message 	 is encrypted
(or decrypted) with a key �.

Using public key technology, Saga Agents sub-
mit request messages via access tokens. To dis-
cuss the structure of an access token, let us con-
sider the case where a Saga Agent �� sends to a
Saga Agent ���1 a request ���� ���1� where �� �

�1�2 � � � �� � ��1� �1��1���2� �2��2� � � � ���� ������ and
���1 � ����1� ���1����1�. 
 denotes an access token and
let 
� be the access token corresponding to ���� ���1�. For
convenience, 
0 is supposed to be ��1� �1��1�.

Now 
� is defined as follows:


� � ���� ���1�Π��Θ�� �� � 1� � � ��

where

� Π� � ��1� �2� � � � � ���

�� includes the constraints specified by ��, for example,
an expiration time of the access token, with which ��
can counter a replay attack [5] on it.

� Θ� � ��1� �2� � � � � ���

Θ� is defined as the set of the signatures,
��1� �2� � � � � ���, where �� � ����1� ���1� �����1

�

,

 � 1� � � � � �. We assume �0 � �1 � ��1� �1��1�.

��, ���1, and Π� are stored in 
� in plaintext.
The authenticity and integrity of a request pair ���� ���1�

in 
� is verified in the following manner. Recall that
�� � �1�2 � � � �� by definition. Then, receiving 
�, ���1 can
immediately generate � tuples from 
�, ���� ���1� ���1� ���
where  � 1� � � � � �. Next ���1 verifies that ��1��1 �
��0� �2� �1� � ��1� �2� �1� and using �1, ���1 also veri-
fies that the conditions specified by �1 are satisfied. If all
the verifications succeed, similarly ���1 verifies ��2��2 �
��1� �3� �2� and the conditions in �2, ..., and eventually
������

� ����1� ���1� ��� and the conditions in ��. Note
that a straightforward implementation of a request pair
would be vulnerable to the attack of insertion, deletion, and
exchange of service contexts of the service path because a
service path is a sequence of service contexts3. However,
we have a set of signatures �� � ����1� ���1� �����1

�

,
 � 1� � � � � �, in 
� and using them we provide protection
against the attack.

Now, from these discussions, we see that the structure of
an access token and a digital signature allow �� to specify
���1 and �1, but not to alter �� freely. Of course, intruders
cannot compromise the authenticity and integrity of access
tokens. Therefore, with access tokens, we can realize Saga
authorization model in open distributed environments.

Furthermore, since a service path can represent delega-
tion of access rights as discussed in Section 4.3, an access
token for a request pair inherently has an aspect of a del-
egation token [15]. Then, Π� of an access token can be
regarded as a condition under which an access privilege is
transferred.

3This kind of vulnerability is similar to that of block cipher[5].



5.2 Access Control Vector
Every Saga Agent has an access control list, ACL, for

services implemented in it, and using the ACL, the Agent
determines whether a request issued to it is authorized or
not. The ACL in a Saga Agent is a list of access control
vectors. An access control vector consists of three parts: (1)
a service path, (2) a service reference (Saga Agent ID and
current user ID are not needed here), and (3) miscellaneous
information.

When an access token for a request ��� �� is sent to a
Saga Agent, the Saga Agent searches its ACL for an access
control vector corresponding to the request. Direct imple-
mentation of this search might incur severe performance
degradation since we have to compare service contexts of
� and those of access control vectors one by one. To avoid
this and perform effective search, a Saga Agent sorts its ac-
cess control vectors in advance and performs binary search
over them.

5.3 Security Control by Security Monitor
A service called a Security Monitor is associated with

every Saga Agent. It is the Security Monitor of a Saga
Agent that performs security control over the Saga Agent.

When a Saga Agent � receives an access token for a
request ��� ��, its Security Monitor � verifies the token in
the way as discussed in Section 5.1. All accesses to a Saga
Agent and accesses from the Agent cannot be bypassed,
but are mediated and controlled by the Security Monitor of
the Agent. Especially, security of all accesses to a Saga
Agent is controlled by the validator of the Security Mon-
itor of the Agent. Therefore, we can regard the Security
Monitor of a Saga Agent as a reference monitor [10] for
the Agent. This way, while a Saga Agent travels over an
open distributed system, its security can be controlled by
the Security Monitor integrated with it.

Furthermore, note that a Saga Agent is highly structured
as depicted in Figure 2. Roughly speaking, we can clearly
decompose a Saga Agent into two parts: (1) its Security
Monitor, and (2) services that implements application se-
mantics. As mentioned in Section 4.2, Saga authorization
model is independent of application semantics, and this is
true of the structure of a Saga Agent. Therefore, either of
the Security Monitor and services of a Saga Agent are little
affected by modification of the other, and can be developed
without concerns about the other.

6 Related Work
This section examines the previous work relevant to

ours.
Java is an object-oriented system developed by Sun Mi-

crosystems [7]. Source codes of Java are compiled into
bytecodes, which are platform-neutral intermediate codes.
Executable bytecodes, called applet, can be retrieved and
executed by WWW clients. Consequently, security is one
of the greatest concerns from the beginning of the design
of Java. Unfortunately, although various notable security
mechanisms are incorporated into Java, the approach is a
little ad hoc because of the lack of formal security models
[11].

In order to take advantage of encapsulation of object-
oriented systems, the authorization models where users are
given authorization on methods, not on primitive opera-
tions, have been an active area of research in recent years

[1, 2]. Nevertheless they are not so uniformly modeled as
Saga authorization model is. Moreover, surprisingly few
models addressed current open distributed environments.

Rabitti et al. [14] developed a sophisticated authorization
model on ORION object-oriented database. In the model,
exploiting relationships among subjects, objects, and access
modes, we can derive implicit authorizations from explic-
itly specified authorizations. However, the model could not
appropriately deal with the situations where agents or ob-
jects work in cooperation in distributed systems. In other
words, the model is orthogonal to Saga authorization model
and it is possible to integrate both of them.

PCM (Path Context Model) [3, 12] takes into account
potentially insecure distributed environments and can per-
form access control in terms of access path. Although PCM
does not model semantics of authorization, it can express
a wide variety of conditions of network environments, for
instance, network domains and encrypted channels. It is
desirable to accommodate such expressive power into our
model in the future.

7 Conclusion and Future Work
Since current open distributed environments are ex-

pected to prevail, it is of critical importance to establish
security of a proper level in them. Nevertheless, in con-
ventional “secure” systems, it is often the case that these
environments are not taken into account. Additionally,
traditional access control matrix models cannot be fully
applicable to such environments.

In the paper we have discussed so far an overview of
Saga Security System, a security architecture in such en-
vironments, highlighting Saga authorization model and its
security mechanism. The model is uniform and flexible,
and is appropriate for advanced computing models such
as object-oriented systems and agent systems, in open dis-
tributed systems. Additionally, we have presented the se-
curity mechanism of Saga Security System, which provides
protection of a Saga Agent while it travels over an open dis-
tributed system. Hence, the security model and mechanism
of Saga Security System realize in current open distributed
systems a promising security architecture, which has been
strongly required but cannot be provided by traditional sys-
tems.

Before concluding the paper, we should make a remark
about our current research status. We are now developing a
prototype version of Saga Security System, and at the same
time, doing research on how Saga authorization model can
be well adapted to a specific object-oriented system, and
how the model can enforce a security policy of an enter-
prise organization, especially, how it can enforce multiple
security policies of federated systems.
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