IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

|PAPER Special Section on Cryptography and Information Security

The Dynamic-Typed Access Matrix Model and
Decidability of the Safety Problem

Masakazu SOSHI'®, Mamoru MAEKAWA?), Nonmembers,

SUMMARY The safety problem in access matrix models de-
termines whether a given subject can eventually obtain access
privilege to a given object. Generally speaking, the safety prob-
lem is, unfortunately undecidable. Not much is known about
protection systems for which the safety problem is decidable, ex-
cept for strongly constrained systems (e.g., monotonic systems).
Therefore, we propose the Dynamic-Typed Access Matrix
(DTAM) Model, which extends the Typed Access Matrix model
of Sandhu by allowing the type of an object to change dynami-
cally. The DTAM model has an advantage that it can describe
non-monotonic protection systems for which the safety problem
is decidable. In particular, with further restrictions, we can show
that the problem becomes NP-hard. In this paper, we formally
define the DTAM model and then discuss various aspects of it
thoroughly.
key words: access control, access matriz model, safety problem,
computational complexity, decidability

1. Introduction

Today a huge amount of valuable information is being
processed and stored by computers and it is of great im-
portance to establish security in such environments. A
security model gives us a framework that specifies com-
puter systems (or protection systems) precisely from a
security point of view.

One of the most widely accepted security models is
an access matrix model. With an access matrix model,
a protection system is described in terms of subjects
(e.g., users or processes) and objects (e.g., files or I/O
devices). Access control is enforced according to an
access matriz A, which has a row for each subject and
a column for each object, and A[s, o] maintains the set
of access modes that subject s is authorized to perform
on object o.

Harrison et al. first formalized the security prop-
erty of protection systems in the access matrix model
(HRU model) as the safety problem [8]. The safety

fThe author is with the Japan Advanced Institute of
Science and Technology, 1-1 Asahidai, Tatsunokuchi-machi,
Nomi-gun, Ishikawa 923-1292, JAPAN.

' The author is with the Graduate School of Informa-
tion Systems, University of Electro-Communications, 1-5-1
Chofugaoka, Chofu-shi, Tokyo 182-8585, JAPAN.

¥ The author is with the Institute of Information Sci-
ences and Electronics, University of Tsukuba, 1-1-1 Tenn-
odai, Tsukuba-shi, Ibaraki-ken 305, JAPAN.

a) E-mail: soshi@jaist.ac.jp

b) E-mail: maekawa@is.uec.ac.jp

c¢) E-mail: okamoto@is.tsukuba.ac.jp

and Eiji OKAMOTO'), Member

problem is the one to determine whether or not a given
subject can eventually obtain an access privilege to a
given object. Generally speaking, unfortunately, the
safety problem is undecidable [8],[19]. This is primarily
due to the fact that the access matrix model has broad
expressive power and that the number of newly created
objects can be infinite. Little is known about protection
systems for which the safety problem is decidable, ex-
cept for strongly constrained systems (e.g., monotonic
systems, where no new entities can be created and no
revocation of privileges is allowed) [7], [8], [16], [18], [22].
For example, Sandhu developed the Typed Access Ma-
trix (TAM) Model [18], which has a wide variety of
decidable safety cases, but most of which are limited to
monotonic systems. However, since security policies in
existent computer systems are not monotonic, it would
be difficult to apply the safety analysis of monotonic
systems to real systems.

Therefore, we propose the Dynamic-Typed Ac-
cess Matrix (DTAM) model*, which extends the TAM
model by allowing the type of an object to change dy-
namically. The DTAM model has an advantage that
it can describe nonmonotonic protection systems for
which the safety problem is decidable. In order to
show this, first we introduce a type relationship (TR)
graph. Then we show that the safety problem for
nonmonotonic systems becomes decidable if, roughly
speaking, the TR graphs of the systems have no cycle
with respect to the parent-child relationship between
objects.*™ Moreover, if we impose on this situation ad-
ditional restrictions that no new objects are permitted
to be created, the safety problem becomes NP-hard.
The decidable safety cases discussed in this paper fall
outside the known decidable ones in previous work [7],
18], [12], [14], [16], [18], [22).

The remainder of the paper is structured as fol-
lows. First, we present the background of our work in
Sect. 2 and point out the problems in previous work.
In order to solve them, we propose and formalize the
DTAM model in Sect. 3. Next, we undertake a thor-
ough investigation of the safety property of the DTAM
model in Sect. 4. In Sect. 5, we discuss various topics

*This work is extension of [24], [25].
**The precise condition for this case will be given in
Sect. 4.

on the DTAM model, and then finally, we conclude this
paper in Sect. 6.

2. Related Work

This section discusses previous work related to ours.

Harrison et al. formulated and analyzed the safety
problem of access matrix models for the first time [8].
Their model is a state transition model and is well
known as the ‘HRU’ model. The state of a protec-
tion system in the HRU model is a tuple of subjects,
objects, and authorization represented by an access ma-
trix. The state is updated by commands, each of which
consists of a condition and a body. The condition part of
a command is a conjunction of conditional expressions,
each of which tests authorization in the access matrix of
concern. Furthermore, the body of a command is a se-
quence of primitive operations, i.e., enter/delete access
rights, and create/destroy objects. The primitive oper-
ations in the body can be executed in order if and only
if all the conditions in the condition part are satisfied in
the state. Now we can define the safety problem in the
HRU model as the one to determine whether or not a
given subject can eventually obtain an access privilege
to a given object. Namely, informally speaking, we can
say that the safety problem models confidentiality and
integrity in computer security.

Generally speaking, unfortunately, the safety prob-
lem is undecidable. Harrison et al. proved it by re-
ducing the Halting Problem of Turing Machines to the
safety problem [8]. Such undecidability is due to the
fact that the HRU model has rich expressive power and
can have infinitely many objects to be created. Even
in protection systems where objects are prohibited from
being newly created, the safety problem is P-space com-
plete. Harrison et al. also showed that the safety prob-
lem in mono-operational protection systems, where the
body of every command is allowed to have only one
primitive operation, is decidable but NP-complete [8].
Harrison and Ruzzo also explored other decidable cases,
where protection systems are monotonic and mono-
conditional, that is, the systems that contain no com-
mands with destroy and delete and at the same time no
commands other than those with at most one condition
expression in their condition parts [7].

Therefore, many researchers have so far investi-
gated decidable cases for the safety problem [7], [8], [12],
[14],[16],[18],[22]. In particular, Sandhu has achieved
great success in this area [16]-[19],[21]. For example,
Sandhu developed the Typed Access Matrix (TAM)
Model [18]. The TAM model bears a close resemblance
to the HRU model, but the former has strong typing in
objects. As a result, the TAM model has a wide vari-
ety of decidable safety cases. However, unfortunately,
most of the cases are limited to monotonic systems.
Since security policies in existent computer systems are
not monotonic, it would be difficult to apply the safety

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

analysis of monotonic systems to real systems. To sum
up, we can say that not much is known about protec-
tion systems for which the safety problem is decidable,
except for strongly constrained systems. Readers can
find a comprehensive survey of the topic in [12], [14],
[18].

Therefore, we propose the Dynamic-Typed Access
Matrix (DTAM) model, which extends the TAM model
by allowing the type of an object to change dynamically.
The DTAM model has an advantage that it can describe
nonmonotonic protection systems for which the safety
problem is decidable. The decidable safety cases dis-
cussed in this paper fall outside the known decidable
ones in previous works.

3. Dynamic-Typed Access Matrix Model

In this section, we give a formal description of the
Dynamic-Typed Access Matrix (DTAM) model.

3.1 Basic Concepts

Definition 1: Objects are defined as passive entities,
e.g., files or I/O devices, which are protected by the
security control mechanism of a computer system, and
subjects as active entities, e.g., users or processes, which
access objects. The current set of subjects and objects
are denoted by S and O, respectively. We assume S C
O. Each member of the set O — S is called a pure
object [18]. |

Every object has its own inherent identity. Hence, for
instance, no object can be created repeatedly as an
identical one. In this paper, the identities of a subject
and an object are represented by s and o, respectively
(s€S,0€0).

Definition 2: Every object has a type, which can be
changed dynamically. L is a finite set of all types. In
particular, we denote a set of types of subjects by Lg
(Ls C L). We assume 1 < |Lg| < |L|. |

For example, Lg may consist of three user types, pro-
grammer, system-engineer, and project-manager. In
addition) we can take ﬁletradefsecrets and ﬁlepublic as
examples of types of pure objects.

Next, we define the type function as follows:

Definition 3: First, we define the function which re-
turns the type of a subject as fs : S — Lg. Next, we
define the function which returns the type of a pure
object as fo : (O —S) — (L — Lg). Now we can define
the type function fr, : O — L, which associates a type
with every object, as follows:

ifoesS,
otherwise.

[£s(0)
fr(0) —{ fol0)

SOSHI et al.: THE DYNAMIC-TYPED ACCESS MATRIX MODEL AND DECIDABILITY OF THE SAFETY PROBLEM

Note that mapping from objects to their types ex-
pressed by fr may vary as time elapses because object
types can be dynamically changed.

Definition 4: Access modes are kinds of access that
subjects can execute on objects (e.g., read, write, own,
and ezecute) and a finite set of access modes is denoted
by R. [

Using Def. 4, an access matrix can be defined as follows:

Definition 5: An access matriz A is a matrix which
has a row for each subject and a column for each object.
An element Afs, 0] of A stores the set of access modes
(Als, 0] C R) that subject s is authorized to exercise on
object o. [

Now we can define a protection state (or state for short)
of a system as follows:

Definition 6: A protection state is defined by (S, O,
A, f1) and denoted by Q.]

3.2 Primitive Operations and Commands

The way in which a protection system evolves by ac-
tivities of subjects is modeled by incremental changes
of the protection state, which are made by executing a
sequence of commands. In this section, we first define
primitive operations in order to give the definition of
commands.

Definition 7: The definition of primitive operations
is given in Table 1, where the states just before and
after a primitive operation executes are indicated by
(S, 0, A, fr) and (S', O', A’, f1'), respectively. m

Most notable primitive operations in the DTAM
model are change type of subject s to [,/ and
change type of object o to I,’. It is often desirable
to change the type of an object dynamically to specify
security policies in real computer systems [4],[15]. For
the example in Sect. 3.1, if a user who is a programmer
is promoted, first to the position of a system engineer,
and next to a project manager, then such a situation is
easily expressed by dynamically changing the user type
accordingly. Dynamically changeable types are also ad-
vantageous in safety analysis (Section 4).

We shall define commands based on Def. 7.

Definition 8: A command is a computational unit
which has the form:

command a(zy : 1,22 : lo, ...,z : 1)

if r € Alzg,,, Tk,

ANry € A[wk327wk02]

N

ANTrm € A[:L‘k
then

op1

op2

om]

Tk

sm)

OPn
end
Here, « is the name of the command, and z1, o, ...,
x, are formal parameters of a whose types are given by
ly, ls, ..., lg, respectively. Furthermore, kg1, kso, ...,
ksm, ko1, ko2, ---, kom are integers between 1 and k.
r1, I's, ..., Tm are access modes and opi, ops, ..., op,
are primitive operations. We assume that k, m, and n
are finite. C'M denotes a finite set of commands.

As defined above, a command consists of the con-
dition and the body. Condition of a command is the
predicate placed between if and then in the command,
where we can specify the conjunction of multiple con-
dition expressions. However, a command does not nec-
essarily have the condition. A command with no condi-
tion is said to be an unconditional command. A condi-
tion expression in the condition of a command tests for
the presence of an access mode in a cell of A. Finally,
the body of a command is the sequence of the primitive
operations contained in the command. [

A command is invoked by replacing all formal param-
eters of the command with actual parameters (i.e., ob-
jects) of the appropriate types. After that, if the con-
dition of the command and all of the conditions of the
primitive operations in the body are evaluated to true
in terms of the actual parameters, then the command
(more precisely, the primitive operations in the body
with actual parameters) can be executed. Otherwise,
the command cannot be executed. Furthermore, we
assume that every execution of commands is serial and
atomic.

3.3 Examples of Commands

To demonstrate the expressive power of the DTAM
model, we show some examples of commands in this
section.

First, let us consider a security policy where a user
who creates an object becomes the owner of the object
and can control the transfer of access rights for the ob-
ject [3],[8]. Such a policy or the derivatives are famil-
iar to us and we can find them implemented on various
computer systems.

Now the policy just described can be expressed in
the following commands, ‘create-file’ and ‘confer-read’:

command create-file(z:user, zs:file)
create object x5 of type file
enter own into Az, zs]

end

command confer-read(x;:user, z2:user, xs:file)
if own € Afzq, 23]
then
enter read into A[zs, 3]
end

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

Table 1 DTAM primitive operations

[Primitive Operations | Conditions | New States
enter r into Als, o] ses S'=85,0'=0
0€O0 A'ls,0] = A[s,o] U{r}
reRr A'[s', 0] = A[s", o] if (s',0") # (s, 0),

forall s’ € S,0 € O
fr' (") = fr(o") for all o' € O

delete r from A[s,0] | s € S S'=85,0'=0
0€0 A'ls,0] = Als, o] — {r}
re€R Alls',0'] = A[s',d'] if (s',0") # (s,0),

forall s’ € S,0 € O
fr' (") = fr(o") for all o' € O

change type of seSs S'=5,0=0
subject s to I, | I,/ € Ls A'ls',0] = A[s',0] for all ' € S, 0€ O
fL,(s) =1
fr'(0) = fr(o) if 0o # s, for all o € O
change type of oe0-S S'=5,0"=0
object o to I,/ lo! € L—Lg | A'[s,0'] = A[s,0'] forall s € S, 0o € O
fL,(O) =1’
fu'(0") = frL(o") if o' # o, forall o' € O
create subject s’ of | s’ ¢ O S'T=SU{s},0' =0uU{s}
type Is ls € Lg A'[s,0] = As,o] forall s € S, 0 € O

[
Alls',o] = ¢ forall o € O
[

s,s']=¢forall s €S’
fL,(sl) = s
fr'(0) = fr(o) for all 0 € O
create object o' of o' ¢ 0 S'=8,0"=0U{0}
type lo lo € L—Lg | A'[s,0] = A[s,0] forall s € S,0€ O
Alls,o']=¢ forall s € S
fL' () =1o
fr'(0) = fr(o) for all 0 € O
destroy subject s sES S'=8—{s},0 =0 —{s}

A'ls',0] = Als' o] for all s’ € S', 0 € O’
fr'(0) = fr(o) for all 0 € O'

destroy object o 0eO—S S'=5,0"=0 - {o}

A'ls, 0] = Als,0'] for all s € ', o' € O’
fr' (") = fr(o') for all o' € O’

As another example, consider a security policy authorization schemes and protection systems.
where trusted subjects (e.g., security officers) can de-
grade the security level of information [15]. Then it
is almost straightforward to give the command ‘down-
grade’ below:

Definition 10: An authorization scheme whose com-
mands do not contain primitive operations destroy,
delete, and change type is said to be monotonic. An
authorization scheme which is not monotonic is said to

command downgrade(x;:security_officer, be nonmonotonic. Furthermore, if the authorization

zo:filenign) scheme of a system is monotonic, the system is said to

if own € A[zy,z] be monotonic, otherwise it is nonmonotonic. [
then . L

change type of object 2 to fileiow This completes the formalization of the DTAM model.

end .
4. Safety Analysis
3.4 Authorization Schemes and Protection Systems In this section, we shall study the safety problems in

the DTAM model thoroughly.
In this section, we define an authorization scheme and

a protection system, which are abstractions of security 4.1 Preliminaries

policies and computer systems, respectively [18]:

Definition 9: An authorization scheme is defined by First, in this section, we present some preliminaries that
(Ls, L, R, CM). Furthermore, a protection system (or make the analysis easier.

simply system) consists of an authorization scheme and

Definition 11: Normalization of command a(zq : Iy,
x2 i la, ..., Tk : 1) is to perform the following two
Next we consider monotonicity and nonmonotonicity of transformations on « for every formal parameter z; (1

an initial state (So, Og, Ao, fLo)- u

SOSHI et al.: THE DYNAMIC-TYPED ACCESS MATRIX MODEL AND DECIDABILITY OF THE SAFETY PROBLEM

< i < k). However, if « has no change type of sub-
ject (or object) x; in its body, then the two transfor-
mations have no effect on it with respect to z;. In the
description below, we assume for simplicity that x; is
a subject. If z; is a pure object, we transform « in a
similar manner.

[Transformation 1] If « has only one change type
of subject z;, then the transformation 1 has no
effect on it with respect to z;. Otherwise, a in-
cludes in the body more than one change type
of subject x;. Now we extract from the body of
«a every change type of subject x; but the last
one.

[Transformation 2] In this stage, we assume that the
transformation 1 has already been applied to «.
Let us assume that with respect to z;, the body of
«a now contains create subject z; of type /; and
change type of subject z; to I} (if it is not the
case, Transformation 2 has no effect with respect
to x;). Now we extract change type of sub-
ject z; to I} from the body and transform create
subject z; of type [; into create subject z; of
type ;. Furthermore, we replace the type of for-
mal parameter z; of a with I}. As a result, we have
alxy s by, my i lo, ooy my 2 L oo my 2) instead of
the original a.

Transformations 1 and 2 optimize commands with re-
spect to change type, i.e., take the net effects of the
sequences of the primitive operations. So the following
theorem is rather obvious:

Theorem 1: Given any command «a(zq : Iy, x2 : I,

.., Tk : li) and protection state @, if a can be run
on @, and @ changes into a state Q' by executing «,
then command o/(zq : 1], ®2 : 1, ..., @k : l}), which is
the normalization of «, can also be run on (), and @
changes into ' by executing «/'.

[Proof] For the sake of brevity, we assume that every
formal parameter z; of « is a subject. If it is a pure
object, we can prove the theorem in the same way.

Concerning Transformation 1, for each z;, every
change type of subject x; in the body of a has no
effect on the execution of other primitive operations in
the body. Thus, only the last change type of subject
x; is significant and the results of execution of a and
that of o on () are the same.

Now notice that for each z;, there is at most one
create subject z; in the body of a because no sub-
ject can be created repeatedly as the identical one (see
also Sect. 3.1). Furthermore, before create subject
x;, there must exist no primitive operation which ac-
cesses z;, i.e., enter/delete for an element of A corre-
sponding to x;, change type of subject z;, and cre-
ate/destroy subject z;. Therefore, Transformation 2

does not cause any difference between the results of ex-
ecution of a and that of a’, but possibly does between
the formal parameters of z; in o and in «'. However,
the latter difference is not significant in type checking
of formal and actual parameters in o and o’ since the
actual parameter subject corresponding to x; does not
exist until a (or ') is executed on Q.

Finally, recall that Transformations 1 and 2 do not
cause any change in the condition part of a. As a result,
if the condition of a holds true on @, then so does the
condition of «'. This completes the proof. a

By Theorem 1, we can easily show the next corol-
lary:

Corollary 1: A set of reachable states from the initial
state of a protection system does not change even if
all commands in the command set of the system are
normalized.

The most important result of Theorem 1 (or Corol-
lary 1) is that we have only to consider commands each
of which contains at most one change type operation
with respect to each formal parameter. This makes
the following safety analysis easier. Hence hereafter we
assume that all commands are normalized unless oth-
erwise explicitly stated.

Now we introduce a type relationship (TR) graph
for safety analysis of the DTAM model. For that pur-
pose, first, we define parent-type relationships between

types.

Definition 12: If the body of a(zy : l1, 2 : I3, ...,
xy : lx) has create subject z; of type [; or create
object z; of type [; (1 <i < k), then we define [; as a
child type with respect to create in . If I; is not a child
type with respect to create in «, then [; is said to be a
parent type with respect to create in . In particular,
if every I; (1 <14 < k) is a child type with respect to
create, all /; are said to be orphan types. [

Definition 13: e If the body of a(zy : Iy, zo : Iz,

., Tk : l) has change type of subject z; to I

or change type of object z; to I} (1 <i < k),

then 1} is said to be a child type with respect to

change type in a and [; is said to be a parent
type with respect to change type in a.

o If the body of a(xy : l1, xa : la, ..., zk : li) has
neither change type of subject z; nor change
type of object x; and [; is a parent type with
respect to create in « (1 <4 < k), then I; is said
to be a parent type with respect to change type
in « as well as a child type with respect to change
type in . In this case, the types of the parent and
the child are the same.

]

In order to demonstrate what parent-child relationships
between types are like, let us consider the following
three commands «;, as, and ag:

N0,

Fig.1 Example of TR graph

command o (xy : I§, 25 :1°)
create object z- of type [°
change type of subject z; to I3
end

command as(z : 15)
change type of subject z to [
end

command az(x : 15)
create subject z of type /3
end

First let us consider a;. [is a parent type with re-
spect to create in «; and a parent type with respect
to change type in ay. Also [3 is a child type with
respect to change type in ;. [° is a child type with
respect to create in a;. In as, I3 is a parent type with
respect to create in as and a parent type with respect
to change type in ay. Furthermore, [§ is a child type
with respect to change type in a;. Concerning as,
we see that [§ is an orphan type. It is evident from
as that any command that has an orphan type must
be unconditional and we can execute the command on
any protection state. In consequence, we can create
objects of an orphan type infinitely.

Now we are ready to define a type relationship
(TR).

Definition 14: A type relationship (TR) graph RG =
(Vr, ER) is a directed graph defined as follows:

e Vg is a set of vertices and Vg = L.

e Ep (C Vg xVg) is a set of edges and for each pair
of vy, v2 € Vg, an edge from v; to vy exists in Er
if and only if either of the following two conditions
holds:

— for some command «, v is a parent type with
respect to create in «, and vs is a child type
with respect to create in a, or

— for some command «, v is a parent type with
respect to change type in «, and v is a child
type with respect to change type in «.

For example, we show in Fig. 1 the TR graph for the
three commands «;, as, a3 in this section .

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

4.2 Safety Analysis of Nonmonotonic Protection Sys-
tems (I)

Let us again consider the TR, graph depicted in Fig. 1.
Furthermore, we assume that a subject s of type I35
exists in a state. Now we can create from the state an
infinite number of pure objects 01, 02, ..., by executing
a1(s,01), as(s), ai(s,02), az(s), In addition, as
stated in Sect. 4.1, we can create objects of an orphan
type infinitely. In summary, the existence of cyclest and
orphan types in a TR graph is closely related to whether
or not the number of objects in a protection system is
finite, which in turn heavily influences the decidability
of the safety problem as mentioned in Sect. 1.

In this section, we shall show that the DTAM
model can describe nonmonotonic systems for which
the safety problem is decidable.

First of all, we define creating commands [18] and
parent-child relationships between objects.

Definition 15: If command « contains create sub-
ject or create object operations in its body, we say
that « is a creating command, otherwise, it is a noncre-
ating command. [

Definition 16: If command a(z; : 1, 2 : Iy, ...,
xr : l) can be executed by substituting o1, 02, ..., o
for 1, x2, ...,) and the execution creates some new
objects, then we say that o; (1 <@ < k) is a parent if [;
is a parent type with respect to create in «, otherwise
that o; is a child. A descendant of object o is recursively
defined as o itself or a child of a descendant of o. If
object 0y is a descendant of object 05, 02 is said to be
an ancestor of o1.]

Note that even a pure object can be a parent of other
objects by definition.
Now we can prove the following lemma:

Lemma 1: Suppose a TR graph has no cycle that
contains parent types with respect to create in creating
commands. In such a case, given any creating command
alzy :ly, xo i o, oo mp 2 lg), if l; (1 <@ < k)isaparent
type with respect to create in «, then a must have
change type of subject z; to [;/ or change type of
object z; to [;' in its body such that I; # [;'.

[Proof] Suppose that for some creating command
a(zy by, x2: 1o, ...,z 2 lg) and some i (1 <@ < k), [;
is a parent type with respect to create in o and « does
not have change type of subject z; to [;/ or change
type of object z; to [;' in its body such that I; # ;.
In that case, /; is a parent type as well as a child type
with respect to change type by Def. 13. Consequently,
the TR graph must contain at least one self-loop with
vertex [; by Def. 14. This is a contradiction. a

fThroughout this paper, we regard a (self-)loop as a
special case of cycles, i.e., a cycle of length one.

SOSHI et al.: THE DYNAMIC-TYPED ACCESS MATRIX MODEL AND DECIDABILITY OF THE SAFETY PROBLEM

Lemma 1 means that the execution of a creating com-
mand « must change the type of every actual parameter
(object) into another type if the type of the correspond-
ing formal parameter is a parent type with respect to
create in . However, the converse of Lemma 1 is not
true.

Using Lemma 1, we can prove Lemma 2:

Lemma 2: The number of objects in arbitrary pro-
tection state of a protection system has an upper
bound, provided that:

1. the authorization scheme of the system has no or-
phan type, and

2. the TR graph of the system has no cycle that con-
tains parent types with respect to create in creat-
ing commands.

[Proof] Since there are no orphan types, every child
type with respect to create has the corresponding par-
ent type with respect to create. Therefore, every ob-
ject in the system is a descendant of an object in the
initial state QO = (S(), 00, A(), fLO)'

For command «, let CR(«) be the total number of
create subject and create object operations in the
body of a. Furthermore, let CR,,,,. be the maximum
value of CR(a) (o« € CM). By Def. 8, CR,,4. is finite.

Now, with respect to some object o in a protection
state, let us consider the number of descendants of o
(see Fig. 2).1

First, we consider the maximum number of direct
children of 0. We see that only at most |L| — 1 times we
can execute creating commands with o as input. The
reason for this is as follows. If we can execute some cre-
ating command « with o as its actual parameter, then
the type of the corresponding formal parameter must
always be a parent type with respect to create in «
since o is already existent. Therefore, by Lemma 1, a
type of o must be changed to another type after a with
o is executed. So if we can execute such creating com-
mands more than |L| — 1 times, then in the execution
sequence of the commands, at least two types assigned
to o must be the same. However, this implies that in
the TR graph, there exists a cycle that contains several
types assigned to o, all of which are parent types with
respect to create in creating commands. This contra-
dicts the assumption 2 of Lemma 2. Therefore, the
number that creating commands with o as input can
be executed is at most |L| — 1 and as a consequence,
the number of direct children of o during the lifetime
of the system is given by at most C R4 X (|L] —1).

Next, we discuss the maximum number of gener-
ations of descendants of 0. The number of the gener-
ations is less than or equal to |L|. The reason is that,
if it is greater than |L|, in descendants of o there exist
two objects that are of the same type. This also implies

"Note that Fig. 2 is not a TR graph. Please do not be
confused in the following discussion.

that the TR graph has a cycle with parent types with
respect to create and causes a contradiction.

From the discussions above, an upper bound of the
number of descendants of an object is given by:

1+ (CRmaz (|L] = 1)) + (CRmaa (L] - 1))
+ ...+ (CRmax (IL] — 1))IFI-1
(CRmax(IL] =)M —1
CRmaiE(|L| - 1) -1
---where CRpaa(|L] —1) > 1

|L| e where CRmaz(|L| - 1) = 1

1 -+ where CRuya(|L] — 1) =0.

\

Consequently, the number of objects in arbitrary pro-
tection state of the protection system has an upper
bound O,,,4., which is given by:

(|O |(CRmaz(|L| - 1))|L| -1
O CRmae (L= 1) — 1
- where CRya(|L| —1) > 1
Omaz = § |Ool|L]
- where CRpyee (L] —1) =1
|Ool
{ - where CRyqe.(|L| —1) = 0.

O
From Lemma 2, we can derive Theorem 2:

Theorem 2: The safety problem for protection sys-
tems is decidable, provided that:

1. the authorization schemes of the systems have no
orphan type, and

2. the TR graphs of the systems have no cycle that
contains parent types with respect to create in
creating commands.

[Proof] By Lemma 2, the number of objects in ar-
bitrary protection states of the systems in Theorem 2
is finite. This implies that the number of distinct pro-
tection states of such a system is also finite, which is
proved as follows.

Let ns and n, denote the numbers of subjects and
objects, respectively. Then the access matrix A has n,
rows and n, columns and can express at most (2/%1)msme
distinct states of authorization since each element of A
can have at most 27l distinct states. In regard to fr,
the maximum number of ways in which f;, maps objects
to object types is given by:

|Ls|™ (|L| — |Ls™~™ if |Ls| <|L|
L ne otherwise.
S (ie., |L| = |Ls])

From the discussions above, an upper bound of the
number of distinct protection states of the system is

First
Generation

Second
Generation

The number of generations

h | Third

Generation

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

The number of direct
children of an object

< CRmax(|L|-1)

object

(includes subject)
parent-child relationship
(not type relation)

Fig.2 Descendants of an object

given by (recall that a protection state is defined by a
four-tuple (S, O, A, fL)):

r O n
o) - Omuz Omaz_ s
X 2{(%) ()

ne=0 ns=0

x gRlnna | Lg| (L] — ||y
{ ~-if |Ls| < |L]
Omax
Omaz ne2 Ng
> {(%)2 insr
ns=0 s
\ -« otherwise.

In other words, the number of different states is finite.
Therefore, we can check whether or not a particular
subject has a particular right for a particular object in
every reachable state from the initial state by using,
say, depth-first search. a

By the proof above, we see that whenever the con-
ditions given in Theorem 2 are satisfied, the safety prob-
lem is decidable regardless of the kinds of primitive op-
erations in command bodies. Namely, Theorem 2 shows
the existence of new nonmonotonic systems where the
safety problem is decidable.

4.3 Safety Analysis of Nonmonotonic Protection Sys-
tems (II)

In this section, we again discuss the safety problem for
nonmonotonic systems in Theorem 2, but with further
restriction that they have no creating commands.

Theorem 3: The safety problem is NP-hard for pro-
tection systems, provided that:

1. the authorization schemes of the systems have no
creating command,! and
2. the TR graphs of the systems have no cycle.

[Proof] First we present the subset sum problem [6]:

Given a finite set M, a size function w(m)
€ Z* for each m € M, positive integer N. Is

fSuch protection systems do not have orphan types.

there a subset M’ C M such that the sum of
the sizes of the elements in M’ is exactly N7

The subset sum problem is known to be NP-complete.

Hereafter, we assume that M = {my, ma, ..., m,} and
>, w(m;) = I. Furthermore, let wy, ws, ..., wi be
the set of distinct values of w(my), w(ms), ..., w(my,).

Without loss of generality, we assume that w(m;) <
w(msg) < ... <w(my) and w; < wy < ... < wg. This
implies that 1 < w(m;) = w;.

Given this subset sum problem and a protection
system that satisfies the conditions in Theorem 3, we
run the authorization scheme construction algorithm
(AC algorithm for short), which is given in Fig. 3. Two
while statements in the figure ((1) and (6)) compute
Ls and CM, respectively, and the commands an cnda
and a; ; (i and j are variables) are defined as follows:

command an end(T : %)

enter r into Afz, z]

change type of subject = to [
end

s
end

command a; ;(71 : [§, 72 : [9)
change type of subject z; to [

i+w(m;)
change type of object z, to I¢,,
end

For example, let us consider the case that M =
{m1,ma,mz}, w(imi) = 2, wimz) = 3, w(ms) = 3.
Shown in Fig. 4 is the TR graph of the authorization
scheme generated by the AC algorithm. For the sake of
simplicity, the parts of the graph for types of pure ob-
jects and parent-child relationships in command an cna
are not drawn in Fig. 4.

Now we consider whether the AC algorithm even-
tually stops or not. Regarding while statement (1) of
the AC algorithm, [{ whose subscript ¢ is the small-
est is removed from C' in step (2) and [7,,, is added
to C in step (5). However, since the condition in step
(4) ensures that a subscript of each element of C' is
not greater than I, C' becomes empty eventually and
while statement (1) surely terminates. With respect
to while statement (6), it also stops in the end. The
computational complexity of AC algorithm is O(In).

SOSHI et al.: THE DYNAMIC-TYPED ACCESS MATRIX MODEL AND DECIDABILITY OF THE SAFETY PROBLEM

Ls < {l3}; C < {ig};

while C # ¢ do /* (1) */
begin
From C = {lf1 e lfl }, choose I3 whose
subscript iq is the smallest of {i1, 42, ..., 9/}
and set ¢ + iq.
C«C—{lf} /*(2)*
for j < 1to k do /* (3) */
begin
if i+w; <I then /* (4) */
begin
Lg + LgU {lf+w]_};
Ceoufly,,h /* (5) */
end
else
goto END1
end;
ENDI1:
end;
CM «+ {aN,end}; C « Lg;
while C # ¢ do /* (6) */
begin
From C = {lf1 e, lfl }, choose I3 whose
subscript iq is the smallest of {i1, 42, ..., 9/}
and set ¢ < iq.
C e C—{ish;
for j <+ 1 ton do
begin

if i+ w(m;) <I then
CM <+ CMU {ai,j}
else
goto END2
end;
END2:
end;
R+ {r}; Ls < Ls U{l%,l° .}
L+ Ls U{I9,13,...,13,1° .}

Fig.3 Algorithm for authorization scheme construction

ﬂg@&
I
g 9§

Fig.4 TR graph generated by AC algorithm

@)

We are now in a position to consider the
polynomial-time reducibility from the subset sum prob-
lem to the safety problem in Theorem 3. For that pur-
pose, we consider the protection system P, which has
the authorization scheme generated by the AC algo-
rithm. The initial state of P, (So, Oo, Ao, fro), 1S
given in Fig. 5. In the rest of this section we reduce the
subset sum problem to the safety problem for P, which

So = {s}
O¢ = So U {o1,02,...,0n}
For every pair of s € Sp and o € Og, Agl[s,0] = ¢
fro(s) =15, fro(oi) =1 (1 <i<n)
Fig.5 Initial state of P

is a restricted case of the safety problem in Theorem 3.

Let us assume that the subset sum problem has
a solution M' = {mj,, mj,, ..., m;}. That is,
M' C M and w(m;,) +w(mj,) +... +w(m;) = N.
In such a case, for subject s and pure objects oj,,
0j,, --- 0j,, we can execute commands ag j, (S, 05,),
aw(mjl)yj2(850j2)7 aw(mj1)+w(mj2)yj3(87Ojs)a sy and
finally u(m;,)+w(mgy)+...4w(m;,_,). (8,05) one by
one. According to the execution, the type of
s changes from [to lw(mh), O T
) = [§ in turn. Finally, for

liu(mjl)+w(mj2)+...+w(m]-l
subject s, we can invoke command an ena(s), and s
acquires the privilege r. If the subset sum problem has
no solution, the type of s can never be [%; and r is not
granted to s.

On the other hand, suppose that s can possess
the privilege r in P. Namely, for s, oj,, 0j,, ..., 0,
we can run commands Qg j; (8,05,), Qaq.55(S,055), - -
Qa5 (8,05) in this order and the type of s is changed
into I3, = [}. Finally, we can execute an cnd(s) and s
gets r. Note that 0 = ap < a3 < ... < a; = N holds.

At this time, let us assume that ap; (1 < i < n)
takes the following form:

command ag ;(z; : 1§, 22 1 1?)
change type of subject z; to [,
change type of object z> to I¢

end.

Thus we have z1, 29, ..., 2, and for every i (1 < i < n),
we set w(m;) to z;. Consequently, we have M = {m;,
M2, ... My}, w(my), w(msz), ..., w(m,).

Now, by the authorization scheme of P, we see that
for every b (1 < b <), ap —ap—1 = w(m;,) holds and
by adding each side of these equations we obtain:

N = w(mjl) +w(mj2) +... +w(mjl)'

Then M' = {mj,, mj,, ..., m;,} is exactly a solution
of the subset sum problem. a

5. Discussion

The reason for the decidability of Theorem 2 can be
informally summarized as follows: recall that the TR
graphs have no cycle that contains parent types with re-
spect to create in creating commands in the theorem.
So if the current type of o is a parent type with respect
to create in «, the execution of creating command «
must change the type of every actual parameter object
o of « into a type that o has never experienced. To

10

put it in another way, creating commands make ‘irre-
versible’ changes on types of parent objects. It is this
irreversibility in creating objects that makes the safety
analysis decidable. The type change in creating objects
is irreversible, so that the number of times such type
changes occurs is finite since the total number of types
is finite by assumption. In consequence, the number
of objects is finite (Lemma 2) and the safety problem
becomes decidable.

In nonmonotonic systems in Theorem 2, it is pos-
sible that the systems reach a state where we can no
longer create new objects. However, generally speak-
ing, it is a good practice to reevaluate security policies
continuously [1], so the state could be a possible candi-
date point of time for such reevaluation.

Although the number of objects in the systems of
Theorem 2 is finite, because the TR, graphs can have
cycles as long as the cycles do not contain parent types
with respect to create in creating commands, it is pos-
sible to execute commands infinite times in such sys-
tems. In that case, the lifetimes of the systems are
infinite.

Finally, it should be noted again that the safety
problem is generally undecidable and most decidable
safety cases in previous work are for monotonic sys-
tems. On the other hand, the decidable cases in The-
orem 2 and in Theorem 3 are for nonmonotonic sys-
tems and fall outside the known decidable ones. In
particular, we have shown that the safety problem in
Theorem 3 belongs to a well-known complexity class,
namely, NP-hard. However, in practice, safety analysis
is intractable unless it has polynomial time complex-
ity. Thus, further research is needed for nonmonotonic
systems where the safety analysis is decidable in poly-
nomial time.

6. Conclusion

In this paper, we have proposed the Dynamic-Typed
Access Matrix (DTAM) Model, which extends the TAM
model by allowing the type of an object to change dy-
namically. The DTAM model has an advantage that it
can describe non-monotonic protection systems where
the safety problem is decidable. In order to show this,
first we have introduced a type relationship (TR) graph,
with which we express both parent-child and transi-
tion relationships among types. Next we have shown
that the safety problem becomes decidable in a non-
monotonic system, provided that some restrictions are
imposed on it. Moreover, we have shown that the safety
problem becomes NP-hard when no new entities are
permitted to be created. The decidable safety cases
discussed in this paper fall outside the known decid-
able ones in previous work.

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

References

[1] D. Bailey. A philosophy of security management. In M. D.
Abrams, S. Jajodia, and H. J. Podell eds., Information
Security: An Integrated Collection of Essays, pp. 98—110.
IEEE Computer Society Press, 1995.

[2] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report
ESD-TR-73-278-1, MITRE Corp., Bedford, MA, Mar. 1973.

[3] D. E. R. Denning. Cryptography and Data Security.
Addison-Wesley Publishing Co., Reading, MA, 1982.

[4] S. N. Foley, L. Gong, and X. Qian. A security model of
dynamic labeling providing a tiered approach to verifica-
tion. In Proceedings of the IEEE Symposium on Security
and Privacy, pp. 142-153, 1996.

[5] S. Ganta. FEzpressive Power of Access Control Models
Based on Propagation of Rights. PhD thesis, Laboratory
for Information Security Technology (LIST), George Mason
University, 1996.

[6] M.R. Garey and D. S. Johnson. Computers and Intractabil-
ity — A Guide to the Theory of NP-completeness. W. H.
Freeman and Co., 1979.

[7] M. A. Harrison and W. L. Ruzzo. Monotonic protection
systems. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and
R. J. Lipton eds., Foundations of Secure Computations, pp.
337-365. Academic Press, 1978.

[8] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection
in operating systems. Commun. ACM, 19(8):461-471, Aug.
1976.

[9] G. J. Holzmann. Design and Validation of Computer Pro-
tocols. Prentice Hall, Inc., 1991.

[10] International Organization of Standardization (ISO). Inter-
national standard ISO/IEC 15408, 1999. Technically iden-
tical to Common Criteria version 2.1.

[11] A. K. Jones, R. J. Lipton, and L. Snyder. A linear time
algorithm for deciding security. In 17th Annual Symposium
on Foundations of Computer Science, pp. 33—41, Houston,
Texas, Oct. 1976.

[12] C. E. Landwehr. Protection (security) models and policy.
In A. B. Tucker, Jr. ed., The Computer Science and Engi-
neering Handbook, chapter 90, pp. 1914-1928. CRC Press,
Boca Raton, FL, 1997.

[13] M. Maekawa, A. E. Oldehoeft, and R. R. Oldehoeft.
Operating Systems — Advanced Concepts. The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

[14] J. McLean. Security models. In J. J. Marciniak ed., En-
cyclopedia of Software Engineering, Vol. 2, pp. 1136—-1145.
John Wiley & Sons, Inc., 1994.

[15] C. Meadows. Policies for dynamic upgrading. In S. Jajodia
and C. E. Landwehr eds., Database Security, IV: Status
and Prospects, pp. 241-250. Elsevier Science Publishers B.
V (North-Holland), 1991.

[16] R. S. Sandhu. The schematic protection model: Its defini-
tion and analysis for acyclic attenuating schemes. J. ACM,
35(2):404-432, Apr. 1988.

[17] R.S. Sandhu. Expressive power of the schematic protection
model. J. Comput. Security, 1(1):59-98, 1992.

[18] R. S. Sandhu. The typed access matrix model. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pp.
122-136, May 1992.

[19] R. S. Sandhu. Undecidability of the safety problem for the
schematic protection model with cyclic creates. J. Comput.
Syst. Sci., 44(1):141-159, Feb. 1992.

[20] R.S. Sandhu and S. Ganta. Expressive power of the Single-
Object Typed Access Matrix Model. In Computer Security
Applications Conference, pp. 184-194, Dec. 1993.

SOSHI et al.: THE DYNAMIC-TYPED ACCESS MATRIX MODEL AND DECIDABILITY OF THE SAFETY PROBLEM

[21] R.S.Sandhu and G. S. Suri. Non-monotonic transformation
of access rights. In Proceedings of the IEEE Symposium on
Security and Privacy, pp. 148-161, May 1992.

[22] L. Snyder. Formal models of capability-based protection
systems. IEEE Trans. Comput., C-30(3):172-181, Mar.
1981.

[23] M. Soshi. Design, Safety Analysis, and Applications of
the Access Control Model based on Dual Labels. PhD the-
sis, Graduate School of Information Systems, University of
Electro-Communications, Mar. 1999. (In Japanese).

[24] M. Soshi. Safety analysis of the dynamic-typed access ma-
trix model. In F. Cuppens, Y. Deswarte, D. Gollmann, and
M. Waidner eds., Computer Security — ESORICS 2000: 6th
European Symposium on Research in Computer Security,
Vol. 1895 of Lecture Notes in Computer Science, pp. 106—
121. Springer-Verlag, Oct. 2000.

[25] M. Soshi, T. Kato, and M. Maekawa. An access control
model based on dual labels. Transactions of Information
Processing Society of Japan, 40(3):1305-1314, Mar. 1999.
(In Japanese).

Appendix A: Example: a Simplified Multi-

level Policy

In this appendix, we express a practical security policy
example for the DTAM model and show how our pro-
posed scheme in this paper is applicable to it. Due to
space constraints, unfortunately, the example we give in
this appendix cannot but be relatively small. For more
practical security policies and thorough discussion on
them, consult [23], [25]1.

Note that the proposed scheme in this paper is one
of the most general ones with decidable safety proper-
ties and can describe nonmonotonic systems. The re-
striction imposed on the proposed scheme is, informally
speaking, that it has an upper bound of the number
of objects. However, this is a very natural restriction
found in almost all practical security systems. For ex-
ample, ISO defines the international standard for se-
curity system evaluation, i.e., ISO 15408 [10]. The
standard prescribes the maximum quota enforcement
of several resources. Hence, the proposed scheme could
express many, or almost all of, practical security poli-
ciest, or on the contrary, it would be easy to modify
existing practical policies such that they conform to the

fThese practical policies are expressed by the dual label
model [23], but it is really straightforward to rewrite them
on the DTAM model. [23] also includes examples of HRU,
TAM, take-grant model, Bell-LaPadula Model, and so on,
described by the dual label model.

tThe fact that the DTAM model has a rich expressive
power can be illustrated as follows. First recall that HRU
can perfectly simulate any Turing machine. This is shown
by the way of the proof in [8]. Hence, HRU is supposed
to express any realistic security policies enforced on current
computer systems. TAM and DTAM models are HRU vari-
ants and supersets of HRU. Furthermore, note that DTAM
is a (proper) superset of TAM. This fact is evidence of the
rich expressive power of the DTAM model. For more details
of the expressive power of the TAM model, see [5], [17], [18],
[20], and for DTAM, see [23], [25].

11

proposed scheme.

Now we present the example scheme. In short,
it is a simplified multilevel security policy, but at the
same time, it contains various factors that are com-
monly found in many security policies [2]-[4], [8],[11]-
[15]. Furthermore, by using the techniques demon-
strated here, it is also easy to express other practical
security policies. The factors of the example policy are
listed below:

owner-based policy,

object creation,

transfer of privileges between subjects,

security levels of subjects and objects,

a simplified multilevel security policy,
downgrading and sanitization, which involve
change type operations in an essential sense and
will be discussed in more details later, and

e TR graph according to the proposed scheme.

The details of the scheme are given below.
First, we define the authorization scheme (Lg, L,
R, CM), each element of which is given as follows:

_ s,init s s,init 1g s
b LS - {lhigh ’lhigh7llow 7llow’ lsecurity_officer’
f f f
lhigh’ llow’ lhigh_to_low}7
o L =1Lg,

e R = {own, read, write, seek_sanitize, sanitized},

e CM = {createfile_high, createfilelow, con-
fer_write_high, confer_write_low, confer_read_high,
confer_read_low, confer_read_high_low, downgrade,
sanitize, finish_sanitize, confer_read_high_to_low,
confer_read sanitized }

Note that all types of this authorization scheme be-
long to Lg, i.e., subject types, for simplicity and con-
venience. The reason will be clarified when we discuss
the commands finish_sanitize and confer_read_sanitized
later.

Below we explain each command in CM. First, we
introduce two creating commands, i.e., create_file_high
and create_file_low as follows:

command create_ﬁle_high(user:li’iig",ft, ﬁle:l,{igh)
create subject file of type liigh
enter own into Aluser, file]
change type of subject user to lZigh
end
command create_file_low(user : ;)" file : llfow)
f

low

create subject file of type [

enter own into Afuser, file]

change type of subject user to [
end

s
low

create_file_high and create_file_low are unconditional
creating commands. In create_file_high, a user of type
1™ can create a file of t 1 db th
high ype lp;,;, and becomes the
owner of the file. Furthermore, the type of the user

12

changes to [}, . This ensures that the scheme here con-
forms to the proposed scheme, namely, the TR graph
has no cycle that contains parent types with respect to
create in creating commands. The scheme also has no
orphan type, which will become clear later.

With respect to create_file_low, note that a similar
discussion also holds.

Next, we discuss authorization of write access for
files. This is represented by the following commands:

command confer_write_high(userl : 1}, ,,
user2 : [}, ., file: l,{igh)
if own € Afuserl, file]
then
enter write into Afuser2, file]
end

user2 : 7

command confer_write_low(userl : [} Tows

low?
file: 1])
if own € Afuserl, file]
then

enter write into A[user2, file]
end

If a user of type I}, (or I},) is the owner of a file
of type I}, (orlj,,), then he can grant write access for
the file to another user of type I3, , (or [,). Needless
to say, these two users may be the same person.

Now we consider downgrading and sanitization in
our policy!. In practical protection systems, it is often
necessary that the security levels of objects are lowered
(downgraded) because it is convenient or the objects
are outdated. However, such level changes violate the
multilevel security policy. To overcome the problem,
usually security officers edit the sensitive parts of the
objects (i.e., sanitization) and release them.

Command downgrade is now given as follows.

.]S
command downgrade(userl : [}, .,

user? : l;aeurity-offieer’ fZle : l}]:igh)
if own € Afuserl, file]
A write € A[userl, file]
then
delete own from Afuserl, file]
delete write from Afuserl, file]

enter seek_sanitize into Afuser2, file]

f

change type of object file to lhigh_to_low

end

If a user of type I}, ,, is the owner of a file of type

l}’:igh and is authorized to exercise write rights on the
file, then he can lower the security level of the file. But
since this violates the policy, a security officer must san-
itize the file before a user of type I can read it (read

"For more details of downgrading and sanitization, refer
to 3], [21], [23], [25].

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

commands will be discussed later). For that purpose,
first seek_sanitize right on the file is granted to the offi-
cer and the own and write rights of the original owner
are revoked.

Sanitization operation is represented by the sani-
tize command below.

s

command sanitize(user : I3, ., ity of ficers

fZle : liigh_to_low)
if seek_sanitize € Afuser, file]
then
enter read into Afuser, file]
enter write into Afuser, file]

end

If a security officer has the seek_sanitize right to
a file of type liigh_to_low, then by the discussion above
it implies that he is asked to sanitize the file. This
situation is described by the two enter statements in
the sanitize command.

Completion of sanitization is expressed by the fin-

ish_sanitize command given below.

s

command finish_sanitize(user : I3, .,.iry o ficers

fZle : liigh_to_low)
if seek_sanitize € Afuser, file]
then
delete seek_sanitize from Aluser, file]
delete write from Afuser, file]
enter sanitized into A[file, file]

end

Note that since we treat files as subjects (see also
the authorization scheme), we can store their states
in the access matrix in terms of access modes. In
finish_sanitize above, this is exemplified by the primi-
tive operation ‘enter sanitized into A[file, file]’. This
technique was first introduced in [8].

Now we are in a position to show read commands
below.

command confer_read high(user : [}, ,, file liigh)
enter read into A[user, file]
end

command confer_read_low(user : I}, file: llfow)
enter read into Afuser, file]
end

confer_read_high and confer_read_low are simple and in-
tuitive. A user of type I}, , (or [I},,) can read a file of

low
type liigh (OI' lifow)'

command confer_read_high low(user : I}, ,, file : i)
enter read into A[user, file]
end

SOSHI et al.: THE DYNAMIC-TYPED ACCESS MATRIX MODEL AND DECIDABILITY OF THE SAFETY PROBLEM

Because we are considering a (simplified) multi-
level policy, the objective of confer_read_high_low com-
mand is also obvious. That is, a user of type Lhign 18
f

low"

allowed to read a file of type [

command confer_read_high_to_low(user : I}, ,,

flle : liigh_to_low)
enter read into Afuser, file]

end

s
low>

command confer_read_sanitized(user : |
flle : liigh_to_low)
if sanitized € A[file, file]
then
enter read into Afuser, file]

end

As we have discussed downgrading and sanitization,
confer_read_high_to_low and confer_read_sanitized com-
mands would also need a little explanation. If a file is of
type liigh_to_low and marked as sanitized, then it means

that the file was of type lii oh before, and that it has
already been downgraded and sanitized by a security
officer. Therefore it is assumed that it has now no sen-
sitive information and a user of type [}, can read it.
Needless to say, a user of type l}; , can read it by com-
mand confer_read_high_to_low, even if it has not been
sanitized yet.

The TR graph of the scheme reported here is
drawn in Fig. A-1. Note that the authorization scheme
given in this section is nonmonotonic and its TR graph
actually follows the proposed scheme in this paper.

Now we consider the safety property of the de-
scribed scheme. First of all, recall that the safety prob-
lem is undecidable in general as discussed in Sects. 1
and 2. Namely, systematic ways (i.e. algorithms) to
analyze it do not exist. Thus, in order to consider
the safety property, usually we must investigate every
reachable state one by one. However, such an analysis
of even small-scale systems often leads to “state explo-
sion” [9] and fails (safety analysis is even more difficult
than ordinary protocol analyses because we must con-
sider the cases of infinite objects to be newly created).
Of course, for our proposed scheme, such an investi-
gation process eventually terminates (i.e., decidable).
Therefore, in order to explain how the safety analysis
is conducted, let us consider a simple protection system
below:

e authorization scheme: (Lg, L, R, C M), which has
been defined so far.
e an initial state Qo = (So, Oo, Ao, fL,):

— So = {ul,u2,u3, so},

- 00 = {f}:

— Ap : Ag[s,0] = {own} if s = u2 and 0 = f,
Ap[s, 0] = ¢ otherwise, and

13
= frot fro(wl) = L fro(u2) = L,
fLO(U?)) = llsouﬂ fLO(SO) = lzecurity_officer’

Fro(F) = lhign-

Now consider whether or not user u3 can obtain
the read rights for file f. A part of state transitions of
the protection system above is given in Fig.A-2. Ob-
serve that one state transition actually reaches a state
where u3 can read f. The investigation process given
here is really a simplification of actual safety analyses.

Masakazu Soshi He received his B.E.
and M.S. degrees from the University of
Tokyo in 1991 and in 1993, respectively,
and his Ph.D. degree from the University
of Electro-Communications in 1999. He
worked as an associate for the University
of Electro-Communications from 1997 to
1998 and for the Japan Advanced Insti-
tute of Science and Technology (JAIST)

from 1999 to January 2003. Since Febru-

ary 2003, he has been a research asso-
ciate professor of JAIST. His research interests include theoreti-
cal analysis of access matrix models, anonymous communication,
and development of security architectures in general.

Mamoru Maekawa He received his
BS and PhD degrees from Kyoto Uni-
versity and the University of Minnesota,
respectively. He is currently Dean and
Professor of the Graduate School of In-
formation Systems, University of Electro-
Communications, Tokyo, Japan. His re-
search interests include distributed sys-
tems, operating systems, software engi-

neering, and GIS. He is listed in many

major Who’s Who’s.

Eiji Okamoto Eiji Okamoto received
his B.S., M.S. and Ph.D degrees in elec-
tronics engineering from the Tokyo In-
stitute of Technology in 1973, 1975 and
1978, respectively. He worked and stud-
ied communication theory and cryptogra-
phy for NEC central research laboratories
since 1978. Then he became a professor at
JAIST (Japan Advanced Institute of Sci-

ence and Technology) from 1991, and at

Toho University from 1999 until 2002. He
is currently a professor at the Institute of Information Sciences
and Electronics, University of Tsukuba. His research interests
are cryptography and information security.

14

create_file_high-~

. B4
confer_read_high
confer_write_high
confer_read_high_low
confer_read_high_to_low
downgrade

finish_sanitize { ot
confer_read_high_to_low, I
confer_read_sanitized ™.

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.1 JANUARY 2004

| s,init
-~ Thigh

0
< 'high

confer_read_high
confer_write_high

downgrade

sanitize -7 Y
A

S

create_file_high

high_to_low

security_officer

. | sinit
create_flle_l(aw,..-- low
create_file_lo
; .
s
I ; f
low |

confer_read_low
confer_write_low
confer_read_sanitized

confer_read_low
confer_write_low
confer_read_high_low

downgrade

% sanitize
/ finish_sanitize

__, parent-child with
respect to create
,,,,,,,,,,,,,,,,,,, . parent-child with
respect to change type
Fig.A-1 TR graph
cr_f_h(ul, f1) cf_r_h(ul, f1) cf_w h(ul, ul, f1)
QO Q1,1 lez
cf_r_h(u2, f) cf _w_h(u2, u2, f) cr_f_h(ul, f1)
21 Qz,z
cf_w h(u2, u2, f) dgrd(u2, so, f)

i1

t , f
CS” z(so, f) Qi,S
Cfnsh_sntz(so, f)

Q

i,4

J U U

Gf_r_sntzd(u& f)

Qi,5

A state transition where user u3 eventually
obtains read rights for file f.

Fig. A-2

Abbreviation
cr_f_h: create_file_high
cf_r_h: confer_read_high
cf_w_h: confer_write_high
dgrd: downgrade
sntz: sanitize
fnsh_sntz: finish_sanitize
cf_r_sntzd: confer_read_sanitized

State transitions

