
Software Tamper Resistance Based on the

Difficulty of Interprocedural Analysis

Toshio Ogiso�, Yusuke Sakabe, Masakazu Soshi, and Atsuko Miyaji

School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi-machi, Nomi-gun, Ishikawa 923-1292, JAPAN

E-mail: {t-ogiso,y-sakabe,soshi,miyaji}@jaist.ac.jp

Abstract. Software obfuscation is a promising approach for protection
of intellectual property rights of software in untrusted environments. Un-
fortunately most of previous obfuscation techniques do not have a the-
oretical basis and thus it is unclear how effective they are. Therefore in
this paper we propose new software obfuscation techniques, which are
based on the difficulty of interprocedural analysis. The essence of our
obfuscation techniques is a new complexity problem to precisely deter-
mine the address a function pointer points to in the presence of arrays
of function pointers. We show that the problem is NP-hard and the fact
provides a theoretical basis for our obfuscation techniques. Furthermore,
we have already implemented a prototype obfuscation tool. In this paper
we also describe the implementation and discuss the experiments results.

1 Introduction

The way of software distribution has been changing with the rapid spread of
computer networks such as the Internet. Namely, although almost all of conven-
tional software distribution was in binary code form, now it is becoming more
common to circulate software in source code form. Notable examples of such a
way of software distribution are via perl scripts, Java applets, and JavaScripts.

In such situations, malicious users can analyze software programs distributed
over a network and can extract secret information and/or proprietary algorithms
from them. Unfortunately encryption is hardly competent to solve the problem
since encrypted programs must be eventually decrypted into executable forms
and then adversaries can intercept them in hostile environments.

Consequently realization of software with tamper-resistance, which means the
difficulty to read and modify the software in an unauthorized manner, becomes
increasingly important. Although tamper-resistant software can be realized with
the help of hardware, much attention is now being focused on software obfusca-
tion, which transforms a program into a tamper-resistant form. Thus software
obfuscation has been vigorously studied so far [3, 4, 6, 8, 10, 14]. Unfortunately
most of previous software obfuscation techniques do not have a theoretical basis
and hence it is unclear how effective they are.
� The author is currently with Ministry of Land, Infrastructure and Transport.

In order to mitigate such a situation, Wang et al. proposed a software obfus-
cation technique based on the fact that aliases in a program drastically reduce
the precision of static analysis of the program [14]. However, their approach is
limited to the intraprocedural analysis [1]. Since a program consists of many
procedures1 in general, whether or not it is obfuscated, we must conduct in-
terprocedural analysis [1] in order to understand it more accurately. Moreover,
interprocedural analysis usually involves intraprocedural analysis and most of
software obfuscation techniques that obstruct interprocedural analysis also ob-
struct intraprocedural analysis. Consequently, it is desirable that an obfusca-
tion technique is capable of obstructing interprocedural analysis. Obfuscation
that hinders interprocedural analysis has another advantage. That is, since in-
terprocedural analysis is essentially difficult to accomplish [7, 9], even a little
application of such an obfuscation technique to a program can be quite effective.

Therefore we propose new software obfuscation techniques based on the dif-
ficulty of interprocedural analysis. Furthermore, we also provide a theoretical
basis to the techniques. One outstanding feature of our obfuscation techniques
is the introduction of function pointers [15]2.

Function pointers are a powerful tool for software obfuscation for the follow-
ing two reasons:

1. The presence of function pointers significantly defeats static analysis, espe-
cially, interprocedural analysis. This is because the presence of procedure
calls via function pointers makes it difficult to determine the control flow at
compile time [15].

2. A theoretical basis can be provided for our obfuscation techniques because
the essence of them is a new complexity problem to precisely determine the
address a function pointer points to in the presence of arrays of function
pointers. The problem is shown to be NP-hard in this paper. Note that al-
though similar kinds of problems have been proved to be NP-hard so far [9,
12, 15], our complexity problem is appropriately adapted for software obfus-
cation and completely new.
The NP-hardness of interprocedural analysis of programs obfuscated by our
techniques means that the complexity of interprocedural analysis is expected
to be exponential of the program sizes and is almost intractable. Therefore
we can hardly expect the precise analysis of the programs.

In addition to use of function pointers, we propose two novel obfuscation tech-
niques (of course they are not found in [4]) to impede interprocedural analysis in
this paper. The fundamental idea of the techniques is to increase the number of
1 Throughout this paper we use the terms ‘procedure’ and ‘function’ interchangeably.
2 Collberg et al. briefly mentioned interprocedural obfuscation in the presence of point-

ers [4]. However, their technique does not use function pointers, but aggregate data
structures (e.g., struct data type in C) and (ordinary) pointers. In addition, since
their technique mainly focuses on the difficulty to resolve dynamic data structures,
it is not obvious whether or not it can be used to obfuscate arbitrary programs.
Furthermore, a theoretical basis for the technique is not provided in their work.

unrealizable paths [9] of programs. Therefore, they reduce the precision of static
analysis and make the obfuscated programs harder to understand.

We have already implemented a prototype tool for our software obfscation
techniques and in this paper we describe the implementation and discuss the
experiments results. The experimental results show that the precision of inter-
procedural analysis is greatly reduced and the call graphs of obfuscated programs
are made much more complicated than original ones. They imply the effective-
ness of our obfuscation approaches.

The rest of the paper is structured as follows. In Sect. 2, we shall point out
some drawbacks in previous work. In order to solve such problems, we propose
new obfuscation techniques and give a theoretical basis to them in Sect. 3. In
Sect. 4 we present the implementation of our obfuscation tool and show the
experiments results. Finally we conclude this paper in Sect. 5.

2 Related Work

In this section, we discuss existing software tamper-resistance approaches. Due
to space constraints, we shall mention only representative work.

Aucsmith addressed a threat model and design principles to develop tamper
resistant software [3]. Also he discussed a method to embed a small code fragment
called Integrity Verification Kernel (IVK) into a program to realize software
tamper resistance.

In 1997, Mambo proposed new software obfuscation techniques in which fre-
quency distributions of instructions in obfuscated programs are made as uni-
formly as possible by limiting available instructions for obfuscation [10].

Keeping application to mobile agent systems in mind, Hohl proposed the
concept of ‘time-limited blackbox security’, which provides tamper-resistance in
a prescribed time limit in order to protect mobile agents against attacks mounted
by malicious hosts [8].

Unfortunately previous obfuscation techniques share a major drawback that
they do not have a theoretical basis and they often based their tamper resistance
of software upon the difficulty that human users experience when the users try
to tamper the software. Therefore, it is still unclear how effective the approaches
are.

In order to mitigate such a situation, Wang et al. proposed a software ob-
fuscation technique based on the fact that aliases in a program severely reduce
the precision of static analysis [14]. However, their approach is limited to the in-
traprocedural analysis3. Since a program consists of many procedures in general,
3 Wang addressed interprocedural software obfuscation in the subsequent work [13].

The technique uses function pointers, which is in common with ours. However, as
compared with our approaches, Wang’s approach has the following three drawbacks:
(i) Approaches other than function pointers to explicitly impede interprocedural
analysis are not considered, (ii) Wang does not theoretically analyze the complex-
ity of interprocedural analysis in the presence of function pointers, and finally (iii)
Although obfuscation using function pointers was implemented, it is not evaluated

whether or not it is obfuscated, we must conduct interprocedural analysis in order
to understand it more accurately. Moreover, interprocedural analysis usually in-
volves intraprocedural analysis and most of software obfuscation techniques that
obstruct interprocedural analysis also obstruct intraprocedural analysis. Conse-
quently, it is desirable that an obfuscation technique is capable of obstructing
interprocedural analysis. Obfuscation that hinders interprocedural analysis has
another advantage. That is, since interprocedural analysis is essentially difficult
to accomplish [7, 9], even a little application of such an obfuscation technique to
a program can be quite effective.

3 Our Approach

From the discussions in Sect. 2, we shall propose new software obfuscation tech-
niques based on the difficulty of interprocedural analysis in this section. Further-
more, we provide a theoretical basis to the techniques.

3.1 On the Difficulty of Analyzing Function Pointers

In this section, in order to provide a theoretical basis for our obfuscation tech-
niques, we show that the problem of precisely determining the address a function
pointer points to in the presence of arrays of function pointers is NP-hard [5].
Note that although similar kinds of problems have been considered and proved
to be NP-hard so far [9, 12, 15], the complexity problem presented in this section
is appropriately adapted for software obfuscation and completely new.

Now we are ready to consider Theorem 1 defined below:
Theorem 1: In the presence of assignments for function pointers from arrays
of function pointers and procedure calls via function pointers, where function
pointers point to functions returning integers, the problem of precisely determin-
ing if there exists an execution path in a program, on which a given function
pointer points to a given procedure at a point of the program is NP-hard.
Proof sketch: We prove Theorem 1 by showing that 3-SAT problem [5], which
is known to be NP-complete, is polynomial time reducible to the problem of
Theorem 1.

Here static analysis of a program is conducted under the assumption that all
execution paths within procedures, without regard to interprocedural paths, are
executable. This assumption is commonly found in the literature and is often
called ‘meet over all paths’ [11]. For further backgrounds behind the way of this
proof, see [12], for example.

Now, suppose that we are given the 3-SAT problem with the propositional
variables {v1, v2, . . ., vm} whose values are either true or false, and the formula
∧n

i=1(∨3
j=1lij) where lij is a literal and is either vk or vk for some k (1 ≤ k ≤ m).

Furthermore, each ∨3
j=1lij (i = 1, 2, . . ., n) is called a clause. Then we construct

with respect to function pointers in Wang’s empirical study and thus its effectiveness
is not clear.

the C program in Fig. 1, the size of which is obviously polynomial of the length
of the formula.

int true() { return 1; }
int false() { return 0; }
main() {
L1: int (∗fp)(); (∗v1)(); (∗v1)(); · · ·; (∗vm)(); (∗vm)();

int (∗A[2])();

L2: A[0] = false; A[1] = true;

L3: if (-) { v1 = true; v1 = false; } else { v1 = false; v1 = true; }
· · ·
if (-) { vm = true; vm = false; } else { vm = false; vm = true; }

L4: if (-) fp = l1,1; else if (-) fp = l1,2; else fp = l1,3;
if (-) fp = A[(fp)()&& l2,1()];

else if (-) fp = A[(fp)()&& l2,2()];
else fp = A[(fp)()&&l2,3()];

· · ·
if (-) fp = A[(fp)()&&ln,1()];

else if (-) fp = A[(fp)()&&ln,2()];
else fp = A[(fp)()&&ln,3()];

L5:
}

Fig. 1. Reduction of 3-SAT problem to the problem in Theorem 1

In the code fragment L1, vi (i = 1, 2, . . ., m) is declared as a function pointer
and corresponds to the propositional variable vi of the 3-SAT problem. Similarly,
vi is also declared as a function pointer, but it corresponds to the negation of
the propositional variable vi. Moreover, lij (i = 1, 2, . . ., n, j = 1, 2, 3) in Fig. 1
corresponds to the j-th literal lij of i-th clause in the formula, i.e., vk or vk for
some k (1 ≤ k ≤ m).

Any execution path through if-statements in L3 corresponds to a truth value
assignment of the 3-SAT problem and the converse is also true. Thus if the
3-SAT problem has a solution, then every clause has at least one literal that
is true and the corresponding literal variable in Fig. 1 points to the function
address true. Consequently we have the corresponding execution path, on which
function pointer fp points to function true at L5. Furthermore, if the 3-SAT
problem has no solution, fp does not point to function true, but to false, at L5
on any execution path.

Now it should be clear that the 3-SAT problem has a solution if and only if
we can determine if there exists an execution path, on which function pointer
fp points to function address true at L5. This completes the proof.

3.2 Proposed Obfuscation Techniques

Theorem 1 in Sect. 3.1 means that the complexity is NP-hard to conduct precise
interprocedural analysis on programs that have assignments for function pointers
from arrays of function pointers and procedure calls via function pointers. Thus,
this fact gives a theoretical basis to software obfuscation with such techniques.

Based on this discussion, in this section we propose software obfuscation
techniques that transform programs into the forms described above. First, we
present how function pointers are used in our proposed approach. Then we ad-
ditionally propose two new obfuscation techniques to significantly reduce the
precision of interprocedural analysis by increasing the number of unrealizable
paths of programs.

Use of Function Pointers for Software Obfuscation Our software obfusca-
tion technique uses function pointers and this is a great deviation from previous
work. Function pointers are used combinedly with other obfuscation techniques
discussed later in this section.

In particular, one of useful obfuscation techniques that can be used along
with function pointers are arrays. Arrays have essentially the same semantics as
pointers and computation of indices of array variables is difficult for the similar
reason as in the case of pointers [1]. Therefore in order to obstruct static analysis,
we find it useful to store function addresses or pointers in arrays and to make
procedure calls via the arrays and function pointers. This is why they are used
in Theorem 1.

Our obfuscation procedures with respect to function pointers are given below.
They consist of three phases, i.e., (1) Decomposition of procedures, (2) Use of
function pointers, and (3) Introduction of arrays of function pointers. Below,
the procedures are concisely described because of space limitation, although,
it should be noted that they roughly correspond to the algorithm that was
implemented in our prototype obfuscation tool discussed in Sect. 4.1. Also notice
that although the example programs below that result from obfuscation are
intentionally not so obfuscated for the purpose of explanation, it is not difficult to
transform a program into any more obfuscated form, as our obfuscation tool does.
Moreover, the NP-hardness result of Theorem 1 means that the complexity of
interprocedural analysis of the obfuscated programs is expected to be exponential
of the program sizes. Therefore we can hardly expect the precise analysis of the
programs.

Now we are in a position to present our obfuscation procedures with respect
to function pointers.

1. Decomposition of procedures
At first we randomly pick a procedure, decomposes it into smaller proce-
dures, and reconstruct the original procedure with the decomposed ones
while maintaining the original semantics (Fig. 2). This step is repeatedly
done at random on multiple procedures in the program. At this stage we
might insert dummy functions into the program. Thus the numbers of nodes

and edges of the control flow graph and the call graph become larger and as
a result the technique makes interprocedural analysis of the program more
difficult.

func() {
 int a, b;
 ...
 if (a > b)
 a = b;
 ...
 b = a+1;
 ...
}

int a, b;
...
func1() { a = b; }
func2() { b = a+1; }
func() {
 ...
 if (a > b)
 func1();
 ...
 func2();
 ...
}

Fig. 2. Decomposition of procedures

2. Use of function pointers
A set of procedures and decomposed ones randomly chosen are now forced to
be called via function pointers. For example, the program at the right hand
side of Fig. 2 might be transformed into the one in Fig. 3. As drawn in Fig. 3,
two new if-statements have been newly introduced. Note that since the val-
ues of the condition expressions a*(a+1)%2 and (b-2)*(b-1)*b%6 always
equal to zero regardless of the values of a and b respectively, the semantics
of the original program is maintained. However, generally speaking, in static
analysis it is very difficult to determine the execution paths in the presence
of if-statements4. Needless to say, such condition expressions can be made
arbitrarily complicated as long as the original semantics is retained. There-
fore the if-statements make it difficult to determine the function addresses
that fp points to.

3. Introduction of arrays of function pointers
Some of procedure calls are replaced with the calls via arrays of function
pointers. One possible program into which the program in Fig. 3 are con-
verted is presented in Fig. 4. There the array A of function pointers, and
function func0 that helps index calculation of A are provided. Of course a
more elaborated manner of index computation may be also possible (actually
some others are implemented in our prototype tool). Now assignments to fp
depend on the function call via (previous value of) fp and the correspond-
ing element of A. Combination of them significantly defeat static analysis as
discussed so far.

4 This leads to the ‘meet over all paths’ assumption as stated in Theorem 1. Note
that this assumption works fine for intraprocedural analysis, but cannot necessarily
cope with some interprocedural analysis in the face of unrealizable paths. This will
be further discussed later.

int a, b; int (*fp)(); ...
func1() { a = b; }
func2() { b = a+1; }
func() { ...
 if (a > b) {
 if (a*(a+1)%2 == 0) fp = func1; else fp = func2;
 ...; (fp)(); ...
 }
 ...
 if ((b-2)*(b-1)*b%6 != 0) fp = func1; else fp = func2;
 ...; (fp)(); ...
}

Fig. 3. Use of function pointers

int a, b; int (*fp)(); int (*A[10])(); ...
func0() { return ((a-1)*a); }
func1() { a = b; }
func2() { b = a+1; }
func() { ...
 A[0] = A[1] = func0; A[2] = func1; A[3] = func2;
 A[4] = A[6] = func0; /* dummy */
 A[5] = A[9] = func1; /* dummy */
 A[7] = A[8] = func2; /* dummy */
 ... fp = A[(func0()%2)*a*b]; ...
 if (a > b) {
 if (a*(a+1)%2 == 0) fp = A[((fp)()%2)+2]; else fp = A[((fp)()%2)+4];
 ... (fp)(); ...
 }
 ... fp = A[b&1]; ...
 if ((b-2)*(b-1)*b%6 != 0) fp = A[((fp)()%2)+5]; else fp = A[((fp)()%2)+3];
 ... (fp)(); ...
}

Fig. 4. Introduction of arrays of function pointers

Obfuscation to Increase the Number of Unrealizable Paths One of the
reasons why interprocedural analysis is difficult is that it must follow the ex-
ecution paths, on which every procedure call returns to the point where the
procedure was actually called [9]. Such paths are called realizable paths. The
paths that are not realizable are called unrealizable paths. The difficulty of in-
terprocedural analysis to exactly follow the realizable paths increases drastically
as the size of the program becomes larger or the call graph becomes more com-
plicated. On the other hand, if interprocedural analysis ignores the unrealizable
paths, it only fails or otherwise yields imprecise analysis results [7, 9].

Based on this discussion, in this section we propose two novel software obfus-
cation techniques to hinder interprocedural analysis: Mergence of procedure calls
into one call and Additions of redundant return-statements. The fundamental
idea of these two techniques is to increase the number of unrealizable paths of

programs. The techniques fundamentally reduce the precision of static analysis
and make the obfuscated programs harder to read.

Notice that they are general obfuscation techniques and are not necessarily
used combinedly with function pointers, although they are in our obduction tool.

Merge Procedure Calls into One Call This technique randomly selects multiple
procedure calls, generate a new procedure, and finally accommodates the selected
procedure calls into the new procedure.

func1() { ... }
func2() } ... }

func() {
 ...
 func1();
 ...
 func2();
 ...
}

int sw;
func1() { ... }
func2() } ... }
func3() { ...
 switch (sw) {
 case 0: func1(); break;
 case 1: func2(); break;
 ...
 }
 ...
}

func() {
 ...; sw = (sw-1)*sw%2; ...
 func3();
 ...; sw = sw*sw*(sw+1)*(sw+1)%4+1; ...
 func3();
 ...
}

Fig. 5. Merge procedure calls into one call

sw==0

sw==1

func func1

func2

call func3

return func3

entry func1

exit func1

entry func2

exit func2

exit func3

return func2

return func1

call func2

call func1

switch (sw)
. . .

. . .

. . .

func3

call func1 entry func1

call func2 entry func2

exit func1

exit func2

return func1

return func2

. . .

. . .

. . .

func func1

func2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(10)

(9)

(11)

(12)

(13)

(14)

(15)

(16)

(18)

(17)

call func3

return func3

entry func3

Fig. 6. Call graph change after procedure calls merged

For example, consider the transformation shown in Fig. 5. As illustrated in
the figure, two procedure calls func1() and func2() are selected at random,

procedure func3() is newly created, and finally the two calls are embedded into
func3() in some obfuscated fashion. After such obfuscation is performed, the
call graph changes as depicted in Fig. 6.

Now look at the call graph more carefully. As Fig. 6 shows, it is straightfor-
ward to follow the execution path on the call graph before transformed. On the
other hand, the call graph after transformed (at the right hand side of Fig. 6)
has now two unrealizable paths, namely, one is ‘· · · → [(15) exit func1] →
[(9) return func1] → [(12) exit func3] → [(5) return func3] → · · ·’, and the
other is ‘· · · → [(18) exit func2] → [(11) return func2] → [(12) exit func3]
→ [(2) return func3] → · · ·’. Thus this obfuscation technique complicates the
structure of the call graph and increases the uncertainty of possible realizable
paths on the graph, which results in the obstruction of interprocedural analysis.

Additions of Redundant Return-Statements Another obfuscation technique here
can also complicate the call graph and hinder interprocedural analysis. This is
done by adding redundant return-statements. For example, see Fig. 7. The call
graph change due to the obfuscation is drawn in Fig. 8. It is not hard to see that
the call graph becomes more complicated and the number of unrealizable paths
increases from two to four. Hence the same discussion in the previous technique
also applies to the obfuscation technique here and demonstrates its validity.

func1() {
 int a;
 ...
 return a;
}

func() {
 int x, y;
 ...
 x = func1();
 ...
 y = func1();
 ...
}

func1() {
 int a;
 ...
 if (a*(a+1)*(a+2)%6)
 return a+1;
 else
 return a;
}

func() {
 int x, y;
 ...
 x = func1();
 ...
 y = func1();
 ...
}

Fig. 7. Additions of redundant return-statements

4 Prototype Implementation and Experiments

This section describes our implementation of the proposed obfuscation tech-
niques and presents experiments results.

entry func1

if (a...)

exit func1

exit func1

x=a+1

x=a

y=a+1

y=a

. . .

func func1

false

func func1

call func1

entry func1return func1

call func1 exit func1

return func1

.

x=a

y=a

call func1

return func1

call func1

return func1

. . .

true

Fig. 8. Call graph change after return-statements added

4.1 Prototype Obfuscation Tool

We have implemented a prototype obfuscation tool based on our proposed tech-
nique with SUIF [2]. SUIF is an excellent compiler infrastructure system being
developed at Stanford University, and enables us to manipulate programs in
SUIF’s intermediate representation called IR. Furthermore, SUIF provides var-
ious transformation utilities between IR and various programming languages,
and also has a lot of support packages. We used one of the packages to con-
duct interprocedural analysis of programs. A main part of the structure of our
obfuscation tool is depicted in Fig. 9.

call "obfuscate"

do_file_set_block

do_file_block

_create_variable

_create_function

_create_fpointer

do_procedure_definition _slice_func

_import_fpointer

_complicate_cflow

_create_function

_insert_array_assign

_replace_fcall_by_
 array_with_fpointer

Fig. 9. Basic structure of our obfuscation tool

Now our obfuscation tool works roughly as follows. The obfuscation tool
first reads a target program and transform it into IR representation with

the help of SUIF2. Then two methods of ObfuscatePass class, namely,
do file set block and do file block, are executed in turn for initialization.
do file set block initialize the global data structures and do file block in-
vokes methods create variable, create function, and create fpointer
in order to generate auxiliary variables, dummy functions, function pointers and
arrays of function pointers.

After the initialization phase, the tool obfuscates the target pro-
gram via the call to do procedure definition, possibly multiple times.
do procedure definition method transforms procedures selected at ran-
dom into obfuscated ones, by calling slice func (decomposition of proce-
dures), import fpointer (introduction of function pointers and arrays), and
complicate cflow (complicate the structure of the call graph).

4.2 Experiments

In this section we present application of our obfuscation tool to six programs,
that is, RC6, MD5, jpeg2ps, Camellia, FFT, and coretest.

Table 1 shows the differences between the control flow graphs of the original
programs and those of the obfuscated programs. We can readily see from the
table that there exist increases of about 2.17 times in the number of nodes and
about 2.22 times in the number of edges on the average. The increase of the
numbers of nodes and edges of control flow graphs of programs severely obstruct
analysis of software programs, especially interprocedural analysis [1, 9]. Thus
control flow and data flow analysis become harder. Furthermore, as discussed
in Sect. 3.2 and Sect. 3.2, we can expect that these results immediately lead to
the difficulty of interprocedural analysis. Complication of the control flow graph
also results in the difficulty of program readability [6].

Table 1. Change of the control flow graph

Before Obfuscation After Obfuscation
program #nodes #edges #nodes #edges

RC6 143 146 464 488
MD5 684 684 1331 1353
jpeg2ps 965 1069 1728 1866
Camellia 617 597 1297 1356
FFT 1741 1817 2895 3040
coretest 205 212 470 485

Now turn to Table 2. The table indicates the changes of the numbers and
the types of procedure calls after obfuscation. In Table 2, ‘All Call Sites’ and
‘Direct Call Sites’ represent the numbers of all procedure calls and direct calls
via procedure names, respectively. Furthermore, in the table ‘Indirect Calls’ and

‘Indirect Call Targets’ mean the numbers of indirect procedure calls via function
pointers and possible target addresses function pointers point to, respectively.

As shown in Table 2, all procedure calls of all programs before obfuscation
are direct calls. On the other hand, after obfuscation we have many indirect
calls. Intuitively speaking, this directly means the difficulty of interprocedural
analysis.

More noteworthy in Table 2 is the number of the possible target addresses.
The table shows that on the average we have 23.8 candidate addresses a function
pointer points to per indirect call in the obfuscated programs. In particular FFT
has 40 candidates on the average. Notice that it can be said from the discussions
of Theorem 1 that the complexity of interprocedural analysis is expected to be
exponential of the program size. Therefore these results give a good evidence
that we can hardly expect precise interprocedural analysis of the obfuscated
programs. It is also well-known that lower precision of static analysis impedes
program understanding significantly [7].

Table 2. Change of procedure calls

Before Obfuscation After Obfuscation

Direct All Indirect Indirect Direct All Indirect Indirect
program Call Call Call Calls Call Call Call Calls

Sites Sites Targets Sites Sites Targets

RC6 0 0 0 0 2 41 351 39
MD5 11 11 0 0 15 95 2400 80
jpeg2ps 141 141 0 0 146 214 1904 68
Camellia 68 68 0 0 77 161 2016 84
FFT 75 75 0 0 87 227 5600 140
coretest 46 46 0 0 48 80 384 32

We have evaluated performance degradation due to the obfuscation, as
indicated in Table 3. The experiments were conducted on a Sun Ultra 5
(UltraSPARC-II 400MHz) with Solaris 8 (SunOS 5.8). Programs were compiled
by gcc 2.8.1 with no optimization option and with optimization option ‘-O2’.
Each execution time was the average of 10000 times execution. The average
rate of execution times of obfuscated programs over original programs is 1.4 in
non-optimized versions, on the other hand, the rate becomes 1.93 in optimized
versions. Obfuscation interferes with optimization in nature, thus the difference
of execution times of the original programs and the obfuscated ones would be-
come larger if the programs were optimized versions.

Finally we show the change of the program sizes before and after obfuscation
in Table 4. Similar discussion as in the case of execution time also holds here.

Note that the results presented in this section were obtained by only one
time application of our obfuscation tool to each target program. Taking into
consideration trade-off of required degree of tamper-resistance and performance

Table 3. Change of execution time

non-optimized optimized
Before Obfus- After Obfus- Before Obfus- After Obfus-

program cation [sec] cation [sec] cation [sec] cation [sec]

RC6 0.21 0.27 0.13 0.17
MD5 0.78 1.51 0.26 0.67
jpeg2ps 0.23 0.23 0.17 0.17
Camellia 0.25 0.50 0.07 0.30
FFT 0.20 0.24 0.08 0.11
coretest 0.37 0.38 0.37 0.37

Table 4. Change of program size

non-optimized optimized
Before Obfus- After Obfus- Before Obfus- After Obfus-

program cation [byte] cation [byte] cation [byte] cation [byte]

RC6 9420 15696 8200 12168
MD5 18740 36824 13960 22396
jpeg2ps 24028 48988 19380 38260
Camellia 16744 31560 12280 38260
FFT 48068 92476 22228 48804
coretest 9540 16384 8892 13456

degradation, we can apply the tool to a target program arbitrary times. This is
one of the greatest advantages of our obfuscation tool. Furthermore, since SUIF
has enough generality to support various programming languages, it is easy to
modify our tool to obfuscate other languages other than C.

5 Conclusion

Software obfuscation is a promising approach to protect intellectual property
rights and secret information of software in untrusted environments. Therefore
we have proposed new software obfuscation techniques in this paper. The tech-
niques are based on the difficulty of interprocedural analysis. The essence of our
obfuscation techniques is a new complexity problem, which is, roughly speak-
ing, the one to precisely determine the address a function pointer points to
in the presence of arrays of function pointers. We have shown that the prob-
lem is NP-hard and the fact provides a theoretical basis for our obfuscation
techniques. Furthermore, we have already implemented a prototype tool that
obfuscates C programs according to our proposed techniques and in this paper
we have described the implementation and discussed the experiments results by
means of our obfuscation tool. The experimental results show that the precision
of interprocedural analysis is greatly reduced and the call graphs of obfuscated

programs are made much more complicated than original ones. They imply the
effectiveness of our obfuscation approaches.

Acknowledgment

The authors would like to thank the anonymous referees for valuable and helpful
comments on this paper.

References

1. A. V. Aho et al. Compilers: Principles, Techniques and Tools. Addison-Wesley,
1986.

2. G. Aigner et al. An overview of the SUIF2 compiler infrastructure. Comp. Syst.
Lab., Stanford Univ. http://suif.stanford.edu/.

3. D. Aucsmith. Tamper resistant software: An implementation. In R. J. Anderson
ed., Information Hiding: First International Workshop, Vol. 1174 of LNCS, pp.
317–333. Springer-Verlag, 1996.

4. C. Collberg et al. A taxonomy of obfuscating transformations. Tech. Rep. 148,
Dept. of Comp. Sci., the Univ. of Auckland, New Zealand, 1997.

5. M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the
Theory of NP-completeness. W. H. Freeman and Co., 1979.

6. H. Goto et al. Evaluation of tamper-resistant software deviating from structured
programming rules. In ACISP 2001, Vol. 2119 of LNCS, pp. 145–158. Springer-
Verlag, 2001.

7. M. Hind et al. Interprocedural pointer alias analysis. ACM Trans. Prog. Lang.
Syst., 21(4):848–894, 1999.

8. F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious
hosts. In G. Vigna ed., Mobile Agents Security, Vol. 1419 of LNCS, pp. 92–113.
Springer-Verlag, 1998.

9. W. A. Landi. Interprocedural aliasing in the presence of pointers. PhD thesis,
Rutgers Univ., NJ, 1992.

10. M. Mambo et al. A tentative approach to constructing tamper-resistant software.
In New Security Paradigm Workshop, pp. 23–33, 1997.

11. T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks: A unified
model. Acta Inf., 28(2):121–163, 1990.

12. E. W. Myers. A precise inter-procedural data flow algorithm. In Conf. record of
the 8th POPL, pp. 219–230, 1981.

13. C. Wang. A Security Architecture for Survivability Mechanisms. PhD thesis, Univ.
of Virginia, 2000.

14. C. Wang et al. Software tamper resistance: Obstructing static analysis of programs.
Tech. Rep. CS-2000-12, Dept. of Comp. Sci., Univ. of Virginia, 2000.

15. S. Zhang and B. Ryder. Complexity of single level function pointer aliasing analysis.
Tech. Rep. LCSR-TR-233, Lab. of Comp. Sci. Research, Rutgers Univ., 1994.

